Long Zhu , Qi Zhou , Wei Wang , Huan Li , Bing Li , Yu Zhang , Jun Luo
{"title":"Synthesis and characterization of a new cage-like energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane","authors":"Long Zhu , Qi Zhou , Wei Wang , Huan Li , Bing Li , Yu Zhang , Jun Luo","doi":"10.1016/j.enmf.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Organic cage-like frameworks are important and versatile skeletons for developing prospective energetic compounds because of their high intrinsic density, symmetry, stability, and derivability. In this paper, a noradamantane-based energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane was synthesized from easily accessible compound 1,6-heptadien-4-ol via eight steps. Based on the X-ray diffraction analysis, it exhibits a good density of 1.678 g⋅cm<sup>−3</sup>. Thermogravimetry (TG) and differential scanning calorimetry (DSC) tests indicate that it has positive thermal stability since its decomposition temperature was found to be 134 °C, and the theoretical detonation velocity is calculated to be 7363 m⋅s<sup>−1</sup>. These results imply that noradamantane has the potential to be a prospective framework for developing high energy-density energetic compounds.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"6 3","pages":"Pages 277-283"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266664722400040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic cage-like frameworks are important and versatile skeletons for developing prospective energetic compounds because of their high intrinsic density, symmetry, stability, and derivability. In this paper, a noradamantane-based energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane was synthesized from easily accessible compound 1,6-heptadien-4-ol via eight steps. Based on the X-ray diffraction analysis, it exhibits a good density of 1.678 g⋅cm−3. Thermogravimetry (TG) and differential scanning calorimetry (DSC) tests indicate that it has positive thermal stability since its decomposition temperature was found to be 134 °C, and the theoretical detonation velocity is calculated to be 7363 m⋅s−1. These results imply that noradamantane has the potential to be a prospective framework for developing high energy-density energetic compounds.