首页 > 最新文献

Energetic Materials Frontiers最新文献

英文 中文
Synthesis and characterization of amphoteric salts and azo-bridged heat-resistant explosives with a 1,2,4-triazole framework 具有 1,2,4- 三唑框架的两性盐和偶氮桥接耐热炸药的合成与表征
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-30 DOI: 10.1016/j.enmf.2024.08.006
En-pei Feng, Jie Tang, Cheng-chuang Li, Teng Zhu, Hong-wei Yang, Guang-bin Cheng
The formation of anions and cations from amphoteric compounds is an effective method to adjust the properties of amphoteric energetic materials, but there are few reports in the field of energetic materials. Based on the excellent properties and modifiability of 1,2,4-triazoles, this work provides a method for the synthesis of novel energetic materials by bridging triazole rings with carboxylic acid, ester and azo groups. Triazole cyclization of carboxylic acids gave the amphoteric compound 6,5-diamino-1′,4′-dihydro-4H,5′H-[3,3′-bis (1,2,4-triazole)]-5′-one () and formed the anionic hydroxylamine salt (), which was not ideal in thermal stability ( = 161 °C). In order to further adjust the properties, was reacted with nitric acid to form nitrate . Cationic nitrate has good thermal stability ( = 334 °C) and high detonation properties ( = 8337 m∙s) in high-energy nitrates. In addition, azo compound (5-nitro-1H, 2′H-[3,3′-bis (1,2,4-triazole)]-5′-yl) hydrazine () has low sensitivity ( = 20 J, = 240 N), good thermal stability ( = 287 °C) and detonation characteristics ( = 8602 m∙s, = 30.5 GPa) comparable to RDX ( = 8795 m∙s). Compounds and have good detonation properties and thermal stability, and have broad application prospects as heat-resistant insensitive explosives.
由两性化合物形成阴阳离子是调整两性高能材料性质的有效方法,但在高能材料领域的报道很少。基于 1,2,4-三唑的优异性能和可调控性,本研究提供了一种通过三唑环与羧酸、酯和偶氮基团桥接合成新型高能材料的方法。三唑环化羧酸得到了两性化合物 6,5-二氨基-1′,4′-二氢-4H,5′H-[3,3′-双(1,2,4-三唑)]-5′-酮(),并形成了阴离子羟胺盐(),其热稳定性(= 161 ℃)并不理想。为了进一步调整其性质,将其与硝酸反应生成硝酸盐。阳离子硝酸盐具有良好的热稳定性(= 334 ℃)和高能硝酸盐的高引爆性能(= 8337 m∙s)。此外,偶氮化合物(5-硝基-1H, 2′H-[3,3′-双(1,2,4-三唑)]-5′-基)肼()灵敏度低(= 20 J,= 240 N),热稳定性好(= 287 ℃),起爆特性(= 8602 m∙s, = 30.5 GPa)与 RDX(= 8795 m∙s)相当。这些化合物具有良好的起爆特性和热稳定性,作为耐热不敏感炸药具有广阔的应用前景。
{"title":"Synthesis and characterization of amphoteric salts and azo-bridged heat-resistant explosives with a 1,2,4-triazole framework","authors":"En-pei Feng, Jie Tang, Cheng-chuang Li, Teng Zhu, Hong-wei Yang, Guang-bin Cheng","doi":"10.1016/j.enmf.2024.08.006","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.08.006","url":null,"abstract":"The formation of anions and cations from amphoteric compounds is an effective method to adjust the properties of amphoteric energetic materials, but there are few reports in the field of energetic materials. Based on the excellent properties and modifiability of 1,2,4-triazoles, this work provides a method for the synthesis of novel energetic materials by bridging triazole rings with carboxylic acid, ester and azo groups. Triazole cyclization of carboxylic acids gave the amphoteric compound 6,5-diamino-1′,4′-dihydro-4H,5′H-[3,3′-bis (1,2,4-triazole)]-5′-one () and formed the anionic hydroxylamine salt (), which was not ideal in thermal stability ( = 161 °C). In order to further adjust the properties, was reacted with nitric acid to form nitrate . Cationic nitrate has good thermal stability ( = 334 °C) and high detonation properties ( = 8337 m∙s) in high-energy nitrates. In addition, azo compound (5-nitro-1H, 2′H-[3,3′-bis (1,2,4-triazole)]-5′-yl) hydrazine () has low sensitivity ( = 20 J, = 240 N), good thermal stability ( = 287 °C) and detonation characteristics ( = 8602 m∙s, = 30.5 GPa) comparable to RDX ( = 8795 m∙s). Compounds and have good detonation properties and thermal stability, and have broad application prospects as heat-resistant insensitive explosives.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and combustion behavior of horizontal two-dimension combustion networks of boron-metal oxides 硼金属氧化物水平二维燃烧网络的构建和燃烧行为
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-30 DOI: 10.1016/j.enmf.2024.08.005
Hao-yu Song, Chen-yang Li, Fu-bing Gao, Chong-wei An, Shi-jiao Li, Xuan Zhan
In order to break through the top-down combustion mode brought by the traditional pillars, it is explored to explore the exploration of delay composition array construction in two-dimensional dimensions. In this study, B-CuO, B-BiO, B-FeO sticks and combustion networks with good forming properties were prepared with the help of a micro-pen direct ink writing device by dispersing the above materials in DMF with boron and metal oxides as the main body of the charge and F as the binder. The sticks were thermally ignited using a nichrome wire, and the flame propagation behaviors of the sticks with different formulations, spacings and heights were tracked with a high-speed camera, and a series of combustion networks were designed on the premise of not leaping into flames. Results show that the B-CuO stick has the fastest ignition speed level (19.71–29.02 mm ·s) at equivalence ratios of 1.0–4.0, followed by B-BiO (5.99–16.01 mm ·s) and B-FeO is the slowest (1.91–4.94 mm ·s). The sticks burned best at an equivalence ratio of 1.0–1.5. A variety of combustion networks were constructed on 50 × 50 mm glass slides by selecting B-CuO, B-BiO, and B-FeO at the equivalence ratios of 1.0, 1.5, and 1.5, respectively, among which B-CuO had the shortest combustion time (5.17 s), the shortest total combustion network length (252 mm), and 400 mm network could be realized for B-BiO. Construction and 19.85 s, and B-FeO can realize 608 mm network length and 130.7 s combustion time. Through these studies, the two-dimensional combustion network construction of boron-metal oxides was realized, which provides a new idea for the delay action in small size.
为了突破传统柱状材料带来的自上而下的燃烧模式,探索在二维维度上进行延迟成分阵列构建的探索。本研究借助微型笔式直接墨水书写装置,将上述材料分散在DMF中,以硼和金属氧化物为电荷主体,以F为粘结剂,制备了具有良好成型性能的B-CuO、B-BiO、B-FeO棒和燃烧网络。用镍铬丝对小棒进行热点燃,并用高速摄像机跟踪不同配方、间距和高度的小棒的火焰传播行为,在不蹿火的前提下设计了一系列燃烧网络。结果表明,在当量比为 1.0-4.0 时,B-CuO 棒的点火速度水平最快(19.71-29.02 mm -s),其次是 B-BiO(5.99-16.01 mm -s),B-FeO 最慢(1.91-4.94 mm -s)。在当量比为 1.0-1.5 时,木棒的燃烧效果最好。选择 B-CuO、B-BiO 和 B-FeO,在等效比分别为 1.0、1.5 和 1.5 时,在 50 × 50 毫米的玻璃片上构建了多种燃烧网络,其中 B-CuO 的燃烧时间最短(5.17 秒),燃烧网络总长度最短(252 毫米),B-BiO 可实现 400 毫米的网络。而 B-FeO 可以实现 608 毫米的网络长度和 130.7 秒的燃烧时间。通过这些研究,实现了硼金属氧化物的二维燃烧网络构建,为小尺寸延迟作用提供了新思路。
{"title":"Construction and combustion behavior of horizontal two-dimension combustion networks of boron-metal oxides","authors":"Hao-yu Song, Chen-yang Li, Fu-bing Gao, Chong-wei An, Shi-jiao Li, Xuan Zhan","doi":"10.1016/j.enmf.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.08.005","url":null,"abstract":"In order to break through the top-down combustion mode brought by the traditional pillars, it is explored to explore the exploration of delay composition array construction in two-dimensional dimensions. In this study, B-CuO, B-BiO, B-FeO sticks and combustion networks with good forming properties were prepared with the help of a micro-pen direct ink writing device by dispersing the above materials in DMF with boron and metal oxides as the main body of the charge and F as the binder. The sticks were thermally ignited using a nichrome wire, and the flame propagation behaviors of the sticks with different formulations, spacings and heights were tracked with a high-speed camera, and a series of combustion networks were designed on the premise of not leaping into flames. Results show that the B-CuO stick has the fastest ignition speed level (19.71–29.02 mm ·s) at equivalence ratios of 1.0–4.0, followed by B-BiO (5.99–16.01 mm ·s) and B-FeO is the slowest (1.91–4.94 mm ·s). The sticks burned best at an equivalence ratio of 1.0–1.5. A variety of combustion networks were constructed on 50 × 50 mm glass slides by selecting B-CuO, B-BiO, and B-FeO at the equivalence ratios of 1.0, 1.5, and 1.5, respectively, among which B-CuO had the shortest combustion time (5.17 s), the shortest total combustion network length (252 mm), and 400 mm network could be realized for B-BiO. Construction and 19.85 s, and B-FeO can realize 608 mm network length and 130.7 s combustion time. Through these studies, the two-dimensional combustion network construction of boron-metal oxides was realized, which provides a new idea for the delay action in small size.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen-rich skeleton reassembled ECOFs as energetic materials with low sensitivities and good corrosion resistance 富氮骨架重新组装 ECOF,使其成为具有低敏感性和良好耐腐蚀性的高能材料
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-17 DOI: 10.1016/j.enmf.2024.08.003
Wen-zhe Huang, Lei Liu, Lu Lu, Yu-ji Liu, Wei Huang, Yong-xing Tang
Corrosion between energetic materials and metal containers can accelerate material aging and failure, significantly affecting the safety, reliability, and lifespan of ammunition systems. To address this challenge, we propose the construction of energetic covalent organic frameworks (ECOFs) as a promising solution. We introduce a straightforward method for synthesizing nitrogen-rich ECOFs. The synthesized ECOFs were characterized through powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (ssNMR), and Fourier-transform infrared spectroscopy (FTIR). These frameworks exhibit remarkable thermal stability, with decomposition temperatures above 285 °C. Notably, they display low sensitivity to non-explosive stimuli, as evidenced by impact sensitivity over 60 J and friction sensitivity over 360 N. The anti-rust properties of the ECOFs were further evaluated using Tafel curve analysis, highlighting their exceptional resistance to metal corrosion. Particularly, ECOF-3, synthesized from triaminoguanidine nitrate and 5-nitro-1,3-benzenedicarboxaldehyde, stands out for its superior steel corrosion resistance. These ECOFs have potential applications as high-energy, anti-corrosion coatings materials.
高能材料与金属容器之间的腐蚀会加速材料老化和失效,严重影响弹药系统的安全性、可靠性和寿命。为了应对这一挑战,我们提出了构建高能共价有机框架(ECOFs)这一前景广阔的解决方案。我们介绍了一种合成富氮 ECOFs 的简单方法。我们通过粉末 X 射线衍射 (PXRD)、固态核磁共振 (ssNMR) 和傅立叶变换红外光谱 (FTIR) 对合成的 ECOFs 进行了表征。这些框架具有显著的热稳定性,分解温度高于 285 ℃。值得注意的是,它们对非爆炸性刺激的灵敏度很低,冲击灵敏度超过 60 J,摩擦灵敏度超过 360 N。特别是由硝酸三氨基胍和 5-硝基-1,3-苯二甲醛合成的 ECOF-3 具有优异的耐钢铁腐蚀性能。这些 ECOF 具有作为高能防腐蚀涂层材料的潜在用途。
{"title":"Nitrogen-rich skeleton reassembled ECOFs as energetic materials with low sensitivities and good corrosion resistance","authors":"Wen-zhe Huang, Lei Liu, Lu Lu, Yu-ji Liu, Wei Huang, Yong-xing Tang","doi":"10.1016/j.enmf.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.08.003","url":null,"abstract":"Corrosion between energetic materials and metal containers can accelerate material aging and failure, significantly affecting the safety, reliability, and lifespan of ammunition systems. To address this challenge, we propose the construction of energetic covalent organic frameworks (ECOFs) as a promising solution. We introduce a straightforward method for synthesizing nitrogen-rich ECOFs. The synthesized ECOFs were characterized through powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (ssNMR), and Fourier-transform infrared spectroscopy (FTIR). These frameworks exhibit remarkable thermal stability, with decomposition temperatures above 285 °C. Notably, they display low sensitivity to non-explosive stimuli, as evidenced by impact sensitivity over 60 J and friction sensitivity over 360 N. The anti-rust properties of the ECOFs were further evaluated using Tafel curve analysis, highlighting their exceptional resistance to metal corrosion. Particularly, ECOF-3, synthesized from triaminoguanidine nitrate and 5-nitro-1,3-benzenedicarboxaldehyde, stands out for its superior steel corrosion resistance. These ECOFs have potential applications as high-energy, anti-corrosion coatings materials.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of electrochemical flow reactor: Static mixing and micro-cell for dehydrogenation oxidation from TNT to 2,2′,4,4′,6,6′-hexanitrostilbene 建造电化学流动反应器:用于从 TNT 到 2,2′,4,4′,6,6′-己硝基苯的脱氢氧化的静态混合和微电池
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-12 DOI: 10.1016/j.enmf.2024.08.001
Yu-qiu Wang, Yu-hui Dong, Ya-qi Qin, Ming Lu, Peng-cheng Wang
From the electrochemical synthesis in beakers to the application of electrochemical reactors, flow electrosynthesis has become more and more prominent in the field of organic synthesis. But for multi-feed reactions, the problem of efficient mixing in the electrochemical reactor remains unresolved. A novel electrolytic cell was devised to facilitate thorough mixing of various feedstocks during electrochemical oxidation. With structural optimization guided by computational fluid dynamics (CFD) simulations, the choice of reaction channels was deliberated upon, alongside an elucidation of the mixing mechanism. The reactor's performance was assessed based on both mixing efficiency and electrochemical oxidation capability with the synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) serving as a model. The high efficiency of the electrochemical reactor was verified by the enhanced yield, purity, and faradaic efficiency of HNS. It is environmentally friendly and easy to realize industrial production.
从烧杯中的电化学合成到电化学反应器的应用,流动电合成在有机合成领域的地位日益突出。但对于多进料反应,电化学反应器中的高效混合问题仍未得到解决。为了在电化学氧化过程中促进各种原料的充分混合,我们设计了一种新型电解池。在计算流体动力学(CFD)模拟的指导下进行了结构优化,对反应通道的选择进行了讨论,同时阐明了混合机制。以合成 2,2′,4,4′,6,6′-己硝基苯二乙烯(HNS)为模型,根据混合效率和电化学氧化能力对反应器的性能进行了评估。通过提高 HNS 的产率、纯度和远红外效率,验证了该电化学反应器的高效性。该反应器对环境友好,易于实现工业化生产。
{"title":"Construction of electrochemical flow reactor: Static mixing and micro-cell for dehydrogenation oxidation from TNT to 2,2′,4,4′,6,6′-hexanitrostilbene","authors":"Yu-qiu Wang, Yu-hui Dong, Ya-qi Qin, Ming Lu, Peng-cheng Wang","doi":"10.1016/j.enmf.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.08.001","url":null,"abstract":"From the electrochemical synthesis in beakers to the application of electrochemical reactors, flow electrosynthesis has become more and more prominent in the field of organic synthesis. But for multi-feed reactions, the problem of efficient mixing in the electrochemical reactor remains unresolved. A novel electrolytic cell was devised to facilitate thorough mixing of various feedstocks during electrochemical oxidation. With structural optimization guided by computational fluid dynamics (CFD) simulations, the choice of reaction channels was deliberated upon, alongside an elucidation of the mixing mechanism. The reactor's performance was assessed based on both mixing efficiency and electrochemical oxidation capability with the synthesis of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) serving as a model. The high efficiency of the electrochemical reactor was verified by the enhanced yield, purity, and faradaic efficiency of HNS. It is environmentally friendly and easy to realize industrial production.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-site trace detection of explosives: From ultra-sensitive SERS to integrated detection technology 现场爆炸物痕量检测:从超灵敏 SERS 到集成检测技术
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-12 DOI: 10.1016/j.enmf.2024.08.002
Zi-han Wang, Wei Liu, Yu Dai, Zhong-ping Liu, Meng-dan Ma, Sheng Cui, Xuan He, Yu Liu
In light of escalating global tensions and the persistent frequency of terrorist incidents, explosives have caused unpredictable serious environmental problems in the worldwide. The imperative for rapid, highly sensitive and accurate detection of explosives has been propelled to the forefront of priorities across various fields, especially national defense and environmental protection. Surface-enhanced Raman scattering (SERS) has emerged as a potent technology for the detection of explosives, attributed to its exceptional sensitivity, rapidity and non-destructive characterization of specific analytes. Concurrently, high-performance substrates and portable devices have expanded the use of SERS technology from the lab to field applications, increasing its potential utility. This progress report summarizes the progress of SERS and related integrated technologies for explosives detection in recent years. Following an introductory synopsis of SERS enhancement principles, this exposition focuses on the pivotal role of SERS substrates in the detection of explosives. It delineates the multifaceted advantages of SERS technology in the realm of explosive detection from three critical dimensions: ultra-sensitivity, semi-quantitative and high selectivity. The report subsequently introduces cutting-edge integration techniques that are compatible with SERS, such as portable Raman instruments, on-site wipeable sampling technology and microfluidic devices, all of which are major advances in promoting on-site high-throughput explosives detection programs. In conclusion, this report synthesizes the outcomes attained and delineates prospective directions for future research in the field of SERS explosives detection.
鉴于全球紧张局势不断升级,恐怖事件持续频发,爆炸物已在全球范围内造成了不可预测的严重环境问题。对爆炸物进行快速、高灵敏度和高精确度的检测已成为各个领域,尤其是国防和环境保护领域的当务之急。表面增强拉曼散射(SERS)因其卓越的灵敏度、快速性和对特定分析物的非破坏性表征,已成为检测爆炸物的有效技术。与此同时,高性能基底和便携式设备将 SERS 技术的应用从实验室扩展到了现场应用,增加了其潜在的实用性。本进展报告总结了近年来 SERS 和相关集成技术在爆炸物检测方面取得的进展。在介绍了 SERS 增强原理之后,本报告重点阐述了 SERS 基质在爆炸物检测中的关键作用。报告从超灵敏、半定量和高选择性三个关键维度阐述了 SERS 技术在爆炸物检测领域的多方面优势。随后,报告介绍了与 SERS 兼容的前沿集成技术,如便携式拉曼仪器、现场可擦拭取样技术和微流控装置,所有这些都是促进现场高通量爆炸物检测项目的重大进展。最后,本报告总结了所取得的成果,并为 SERS 爆炸物检测领域的未来研究指明了方向。
{"title":"On-site trace detection of explosives: From ultra-sensitive SERS to integrated detection technology","authors":"Zi-han Wang, Wei Liu, Yu Dai, Zhong-ping Liu, Meng-dan Ma, Sheng Cui, Xuan He, Yu Liu","doi":"10.1016/j.enmf.2024.08.002","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.08.002","url":null,"abstract":"In light of escalating global tensions and the persistent frequency of terrorist incidents, explosives have caused unpredictable serious environmental problems in the worldwide. The imperative for rapid, highly sensitive and accurate detection of explosives has been propelled to the forefront of priorities across various fields, especially national defense and environmental protection. Surface-enhanced Raman scattering (SERS) has emerged as a potent technology for the detection of explosives, attributed to its exceptional sensitivity, rapidity and non-destructive characterization of specific analytes. Concurrently, high-performance substrates and portable devices have expanded the use of SERS technology from the lab to field applications, increasing its potential utility. This progress report summarizes the progress of SERS and related integrated technologies for explosives detection in recent years. Following an introductory synopsis of SERS enhancement principles, this exposition focuses on the pivotal role of SERS substrates in the detection of explosives. It delineates the multifaceted advantages of SERS technology in the realm of explosive detection from three critical dimensions: ultra-sensitivity, semi-quantitative and high selectivity. The report subsequently introduces cutting-edge integration techniques that are compatible with SERS, such as portable Raman instruments, on-site wipeable sampling technology and microfluidic devices, all of which are major advances in promoting on-site high-throughput explosives detection programs. In conclusion, this report synthesizes the outcomes attained and delineates prospective directions for future research in the field of SERS explosives detection.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amphoteric feature of 3,5-diamino-6-hydroxy-2-oxide-4-nitropyrimidone and its highly-stable energetic anionic salts 3,5-二氨基-6-羟基-2-氧化物-4-硝基嘧啶酮及其高稳定高能阴离子盐的两性特征
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-22 DOI: 10.1016/j.enmf.2024.07.002
Tian Lei, Yan-da Jiang, Bao-jing Tian, Ning Ding, Qi Sun, Sheng-hua Li, Si-ping Pang
Most energetic molecules can only form cations or anions, limiting the structural diversity and performance regulation. In this study, we have presented the interesting amphoteric feature of 3,5-diamino-6-hydroxy-2-oxide-4-nitropyrimidone (DHON), which can be transformed into both DHON anion and DHON cation. The structures of the amphoteric salts were characterized by using single-crystal x-ray diffraction, and their energy (density, heat of formation, detonation velocity, and detonation pressure) and stability (thermal decomposition temperature, impact sensitivity, and friction sensitivity) were also carefully studied. Results indicate DHON anionic salts exhibit very promising stabilities, much superior to DHON cationic salts. Especially, the hydroxylaminium salt exhibits an extremely high thermal decomposition temperature of 309 C. The x-ray data and quantum calculations show that the DHON anion has stronger conjugation and H-bonds than the DHON cation, thus leading to the higher stability.
大多数高能分子只能形成阳离子或阴离子,从而限制了结构的多样性和性能的调节。在这项研究中,我们提出了 3,5-二氨基-6-羟基-2-氧化物-4-硝基嘧啶酮(DHON)有趣的两性特征,它既可以转化为 DHON 阴离子,也可以转化为 DHON 阳离子。利用单晶 X 射线衍射表征了两性盐的结构,并仔细研究了它们的能量(密度、形成热、爆速和爆压)和稳定性(热分解温度、冲击敏感性和摩擦敏感性)。结果表明,DHON 阴离子盐的稳定性非常好,远远优于 DHON 阳离子盐。X 射线数据和量子计算表明,DHON 阴离子比 DHON 阳离子具有更强的共轭和 H 键,因此具有更高的稳定性。
{"title":"Amphoteric feature of 3,5-diamino-6-hydroxy-2-oxide-4-nitropyrimidone and its highly-stable energetic anionic salts","authors":"Tian Lei, Yan-da Jiang, Bao-jing Tian, Ning Ding, Qi Sun, Sheng-hua Li, Si-ping Pang","doi":"10.1016/j.enmf.2024.07.002","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.07.002","url":null,"abstract":"Most energetic molecules can only form cations or anions, limiting the structural diversity and performance regulation. In this study, we have presented the interesting amphoteric feature of 3,5-diamino-6-hydroxy-2-oxide-4-nitropyrimidone (DHON), which can be transformed into both DHON anion and DHON cation. The structures of the amphoteric salts were characterized by using single-crystal x-ray diffraction, and their energy (density, heat of formation, detonation velocity, and detonation pressure) and stability (thermal decomposition temperature, impact sensitivity, and friction sensitivity) were also carefully studied. Results indicate DHON anionic salts exhibit very promising stabilities, much superior to DHON cationic salts. Especially, the hydroxylaminium salt exhibits an extremely high thermal decomposition temperature of 309 C. The x-ray data and quantum calculations show that the DHON anion has stronger conjugation and H-bonds than the DHON cation, thus leading to the higher stability.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic shock response in oriented omnidirectional TATB supercells based on reactive molecular dynamics simulations 基于反应分子动力学模拟的定向全向 TATB 超级胞体中的各向异性冲击响应
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-07-18 DOI: 10.1016/j.enmf.2024.07.001
Guan-chen Dong, Jia-lu Guan, Ling-hua Tan, Jing Lv, Xiao-na Huang, Guang-cheng Yang
1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) is a highly insensitive energetic material used in applications where extreme safety is required primarily. Ensuring the safe use of TATB as planned relies on research into intrinsic behavior under shock loading, which needs further investigation. Here, we study the shock response in oriented supercells of the highly anisotropic TATB based on reactive molecular dynamics simulations and multi-scale shock technique. Results demonstrate that the mechanical response primarily consists of adiabatic compression and plastic deformation. The system is more susceptible to be compressed rather than plastic deformed when shocked direction to the molecular layer at a 45° angle, resulting in the most obvious initial temperature increase. The chemical reaction pathways are similar in our simulations. Under shock loading, polymerization occurs first and then decomposition begins. However, the overall chemical kinetics response intensifies, as the angle between the shock direction and molecular layer decreases. Nonetheless, the rate of decomposition does not strictly correlate with shock direction. Moreover, clusters evolution shows different reactivity based on shock direction and velocity, which makes anisotropy weak at high shock velocity.
1,3,5-三氨基-2,4,6-三硝基苯(TATB)是一种高度不敏感的高能材料,主要用于对安全性要求极高的应用领域。确保按计划安全使用 TATB 有赖于对冲击载荷下的内在行为进行研究,这需要进一步的调查。在此,我们基于反应分子动力学模拟和多尺度冲击技术,研究了高度各向异性 TATB 的定向超胞中的冲击响应。结果表明,机械响应主要包括绝热压缩和塑性变形。当冲击方向与分子层成 45° 角时,系统更容易受到压缩而不是塑性变形,从而导致最明显的初始温度升高。在我们的模拟中,化学反应的途径与此类似。在冲击加载下,聚合首先发生,然后开始分解。然而,随着冲击方向与分子层之间的夹角减小,整个化学动力学反应会加剧。不过,分解速率与冲击方向并没有严格的相关性。此外,簇演化在冲击方向和速度的基础上显示出不同的反应性,这使得各向异性在高冲击速度下变得微弱。
{"title":"Anisotropic shock response in oriented omnidirectional TATB supercells based on reactive molecular dynamics simulations","authors":"Guan-chen Dong, Jia-lu Guan, Ling-hua Tan, Jing Lv, Xiao-na Huang, Guang-cheng Yang","doi":"10.1016/j.enmf.2024.07.001","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.07.001","url":null,"abstract":"1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) is a highly insensitive energetic material used in applications where extreme safety is required primarily. Ensuring the safe use of TATB as planned relies on research into intrinsic behavior under shock loading, which needs further investigation. Here, we study the shock response in oriented supercells of the highly anisotropic TATB based on reactive molecular dynamics simulations and multi-scale shock technique. Results demonstrate that the mechanical response primarily consists of adiabatic compression and plastic deformation. The system is more susceptible to be compressed rather than plastic deformed when shocked direction to the molecular layer at a 45° angle, resulting in the most obvious initial temperature increase. The chemical reaction pathways are similar in our simulations. Under shock loading, polymerization occurs first and then decomposition begins. However, the overall chemical kinetics response intensifies, as the angle between the shock direction and molecular layer decreases. Nonetheless, the rate of decomposition does not strictly correlate with shock direction. Moreover, clusters evolution shows different reactivity based on shock direction and velocity, which makes anisotropy weak at high shock velocity.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of a new cage-like energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane 新型笼状高能化合物 3,7-二硝基-9-硝基-9-氮杂金刚烷的合成与表征
Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-25 DOI: 10.1016/j.enmf.2024.06.005
Long Zhu, Qi Zhou, Wei Wang, Huan Li, Bing Li, Yu Zhang, Jun Luo
Organic cage-like frameworks are important and versatile skeletons for developing prospective energetic compounds because of their high intrinsic density, symmetry, stability, and derivability. In this paper, a noradamantane-based energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane was synthesized from easily accessible compound 1,6-heptadien-4-ol via eight steps. Based on the X-ray diffraction analysis, it exhibits a good density of 1.678 g⋅cm. Thermogravimetry (TG) and differential scanning calorimetry (DSC) tests indicate that it has positive thermal stability since its decomposition temperature was found to be 134 °C, and the theoretical detonation velocity is calculated to be 7363 m⋅s. These results imply that noradamantane has the potential to be a prospective framework for developing high energy-density energetic compounds.
有机笼状框架具有高固有密度、对称性、稳定性和可衍生性,是开发前瞻性高能化合物的重要和通用骨架。本文以容易获得的 1,6-庚二烯-4-醇化合物为原料,通过八个步骤合成了 3,7-二硝基-9-硝基-9-氮杂金刚烷基高能化合物。根据 X 射线衍射分析,其密度为 1.678 g-cm。热重法(TG)和差示扫描量热法(DSC)测试表明它具有良好的热稳定性,其分解温度为 134 ℃,理论爆炸速度为 7363 m⋅s。这些结果表明,正金刚烷有可能成为开发高能量密度高能化合物的前瞻性框架。
{"title":"Synthesis and characterization of a new cage-like energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane","authors":"Long Zhu, Qi Zhou, Wei Wang, Huan Li, Bing Li, Yu Zhang, Jun Luo","doi":"10.1016/j.enmf.2024.06.005","DOIUrl":"https://doi.org/10.1016/j.enmf.2024.06.005","url":null,"abstract":"Organic cage-like frameworks are important and versatile skeletons for developing prospective energetic compounds because of their high intrinsic density, symmetry, stability, and derivability. In this paper, a noradamantane-based energetic compound 3,7-dinitrato-9-nitro-9-azanoradamantane was synthesized from easily accessible compound 1,6-heptadien-4-ol via eight steps. Based on the X-ray diffraction analysis, it exhibits a good density of 1.678 g⋅cm. Thermogravimetry (TG) and differential scanning calorimetry (DSC) tests indicate that it has positive thermal stability since its decomposition temperature was found to be 134 °C, and the theoretical detonation velocity is calculated to be 7363 m⋅s. These results imply that noradamantane has the potential to be a prospective framework for developing high energy-density energetic compounds.","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time for mixing: Mixed dicationic energetic salts based on methylene bridged 4-hydroxy-3,5-dinitropyrazole and tetrazole for tunable performance 混合时间:基于亚甲基桥接 4-羟基-3,5-二硝基吡唑和四唑的混合双阳离子高能盐实现可调性能
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-01 DOI: 10.1016/j.enmf.2024.05.001
Prachi Bhatia , Vikas D. Ghule , Dheeraj Kumar

Various types of materials have been explored in the pursuit of high energy density materials (HEDMs) that have balanced energy and stability. Among them, energetic salts show numerous advantages, such as lower vapor pressures, high physical stabilities, and the opportunity for favorable tuning by careful selection of cations/anions. Nitrogen-rich bases are generally used as cations for energetic salt formation. While the synthesis of salts with larger cations lowers the sensitivity, smaller cations aid better energetic performance. A combination of both in the same ionic moieties might help in the formation of a superior explosive. In this work, a facile route for the synthesis of mixed dicationic energetic salts based on 1-((1H-tetrazol-5-yl)methyl)-3,5-dinitro-1H-pyrazol-4-ol (compound 1) has been explored by various combinations of bigger and smaller cations (compounds 410). All the synthesized energetic salts showed high positive heats of formation, energetic performance comparable to TATB, excellent stability towards impact and friction, and acceptable thermal stabilities. This improved technique will provide an additional option for fine-tuning the energetic properties of HEDMs and will facilitate in exploring the role of various cations in the overall performance of the energetic compounds.

为了追求能量和稳定性兼顾的高能量密度材料(HEDMs),人们探索了各种类型的材料。其中,高能盐显示出众多优势,如较低的蒸汽压、较高的物理稳定性,以及通过仔细选择阳离子/阴离子进行有利调整的机会。富氮碱通常用作形成高能盐的阳离子。合成具有较大阳离子的盐会降低灵敏度,而较小的阳离子则有助于提高能量性能。在相同的离子分子中结合这两种元素可能有助于形成更优异的爆炸物。本研究以 1-((1H-四唑-5-基)甲基)-3,5-二硝基-1H-吡唑-4-醇(化合物 1)为基础,通过不同的大小阳离子组合(化合物 4-10),探索了一条合成混合二阳离子高能盐的简便路线。所有合成的高能盐都显示出较高的正形成热、与 TATB 相当的高能性能、出色的抗冲击和摩擦稳定性以及可接受的热稳定性。这种改进的技术将为微调高能卤化环氧乙烷的高能特性提供额外的选择,并有助于探索各种阳离子在高能化合物整体性能中的作用。
{"title":"Time for mixing: Mixed dicationic energetic salts based on methylene bridged 4-hydroxy-3,5-dinitropyrazole and tetrazole for tunable performance","authors":"Prachi Bhatia ,&nbsp;Vikas D. Ghule ,&nbsp;Dheeraj Kumar","doi":"10.1016/j.enmf.2024.05.001","DOIUrl":"10.1016/j.enmf.2024.05.001","url":null,"abstract":"<div><p>Various types of materials have been explored in the pursuit of high energy density materials (HEDMs) that have balanced energy and stability. Among them, energetic salts show numerous advantages, such as lower vapor pressures, high physical stabilities, and the opportunity for favorable tuning by careful selection of cations/anions. Nitrogen-rich bases are generally used as cations for energetic salt formation. While the synthesis of salts with larger cations lowers the sensitivity, smaller cations aid better energetic performance. A combination of both in the same ionic moieties might help in the formation of a superior explosive. In this work, a facile route for the synthesis of mixed dicationic energetic salts based on 1-((1<em>H</em>-tetrazol-5-yl)methyl)-3,5-dinitro-1<em>H</em>-pyrazol-4-ol (compound <strong>1</strong>) has been explored by various combinations of bigger and smaller cations (compounds <strong>4</strong>–<strong>10</strong>). All the synthesized energetic salts showed high positive heats of formation, energetic performance comparable to TATB, excellent stability towards impact and friction, and acceptable thermal stabilities. This improved technique will provide an additional option for fine-tuning the energetic properties of HEDMs and will facilitate in exploring the role of various cations in the overall performance of the energetic compounds.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000332/pdfft?md5=1c23ee7fc721386d4ee38c7b8b05c914&pid=1-s2.0-S2666647224000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparing HNS/n-Al heat-resistant microspheres with enhanced combustion performance using droplet microfluidic technology 利用液滴微流体技术制备具有更佳燃烧性能的 HNS/n-Al 耐热微球
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-06-01 DOI: 10.1016/j.enmf.2023.10.003
Bi-dong Wu , Yi Liu , Jia-hui Yang , Yun-yan Guo , Kai Han , Fan Wang , Zhong-ze Zhang , Chong-wei An , Jing-yu Wang

Reducing the formation of large carbon clusters during the combustion of energetic materials (EMs) and improving their comprehensive performance hold great significance. With fluororubber (F2604) as a binder, this study prepared HNS/n-Al microspheres with different n-Al contents (5%, 10%, and 15%) using droplet microfluidic technology. Then, it characterized and tested the morphology, particle size distribution, dispersibility, crystal structure, thermal properties, mechanical sensitivity, and combustion behavior of the microspheres. The results show that the prepared microspheres had regular shapes, uniform particle sizes, and excellent dispersibility and contained more homogeneous components than physically mixed samples. Furthermore, the microspheres retained the crystal structures of the raw materials, enjoying high safety performance. The thermal analysis shows that HNS/n-Al microspheres had high heat resistance (thermal decomposition temperature: over 354 °C) and that a higher n-Al content was associated with more thorough thermal decomposition reactions of HNS (HNS: 83%, HNS/n-Al: 84%, 86%, and 93%). The ignition experiments show that the HNS/n-Al microspheres possessed excellent and stable combustion performance, as evidenced by more complete combustion reactions and significantly elevated energy release efficiency. Therefore, it is expected to achieve high-energy and high-speed responses of carbon-rich EMs and promote their practical applications.

减少高能材料(EMs)燃烧过程中形成的大碳团,提高其综合性能具有重要意义。本研究以氟橡胶(F2604)为粘合剂,利用液滴微流控技术制备了不同 n-Al 含量(5%、10% 和 15%)的 HNS/n-Al 微球。然后,对微球的形态、粒度分布、分散性、晶体结构、热性能、机械敏感性和燃烧行为进行了表征和测试。结果表明,制备的微球具有规则的形状、均匀的粒度和出色的分散性,与物理混合样品相比,所含成分更加均匀。此外,微球保留了原材料的晶体结构,具有较高的安全性能。热分析表明,HNS/n-Al 微球具有很高的耐热性(热分解温度:超过 354 °C),并且较高的 n-Al 含量会使 HNS 的热分解反应更彻底(HNS:83%,HNS/n-Al:84%、86% 和 93%)。点火实验表明,HNS/n-Al 微球具有优异而稳定的燃烧性能,表现在燃烧反应更完全,能量释放效率显著提高。因此,它有望实现富碳电磁的高能高速响应,并促进其实际应用。
{"title":"Preparing HNS/n-Al heat-resistant microspheres with enhanced combustion performance using droplet microfluidic technology","authors":"Bi-dong Wu ,&nbsp;Yi Liu ,&nbsp;Jia-hui Yang ,&nbsp;Yun-yan Guo ,&nbsp;Kai Han ,&nbsp;Fan Wang ,&nbsp;Zhong-ze Zhang ,&nbsp;Chong-wei An ,&nbsp;Jing-yu Wang","doi":"10.1016/j.enmf.2023.10.003","DOIUrl":"10.1016/j.enmf.2023.10.003","url":null,"abstract":"<div><p>Reducing the formation of large carbon clusters during the combustion of energetic materials (EMs) and improving their comprehensive performance hold great significance. With fluororubber (F<sub>2604</sub>) as a binder, this study prepared HNS/n-Al microspheres with different n-Al contents (5%, 10%, and 15%) using droplet microfluidic technology. Then, it characterized and tested the morphology, particle size distribution, dispersibility, crystal structure, thermal properties, mechanical sensitivity, and combustion behavior of the microspheres. The results show that the prepared microspheres had regular shapes, uniform particle sizes, and excellent dispersibility and contained more homogeneous components than physically mixed samples. Furthermore, the microspheres retained the crystal structures of the raw materials, enjoying high safety performance. The thermal analysis shows that HNS/n-Al microspheres had high heat resistance (thermal decomposition temperature: over 354 °C) and that a higher n-Al content was associated with more thorough thermal decomposition reactions of HNS (HNS: 83%, HNS/n-Al: 84%, 86%, and 93%). The ignition experiments show that the HNS/n-Al microspheres possessed excellent and stable combustion performance, as evidenced by more complete combustion reactions and significantly elevated energy release efficiency. Therefore, it is expected to achieve high-energy and high-speed responses of carbon-rich EMs and promote their practical applications.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647223000635/pdfft?md5=84dc814eb253cdccfca6ed5ca3f5e53c&pid=1-s2.0-S2666647223000635-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135850123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energetic Materials Frontiers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1