首页 > 最新文献

Energetic Materials Frontiers最新文献

英文 中文
Interactions between a neutral polymeric bonding agent and nitramine explosives and their influencing factors 中性聚合粘接剂与硝胺炸药之间的相互作用及其影响因素
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.03.002
Neutral polymer bonding agents (NPBAs) have proven highly effective in enhancing the interfacial bonding between the bonding matrix and nitramine explosives such as cyclic trimethylene trinitramine (RDX) and cyclic tetramethylene trinitramine (HMX). However, there is a lack of clear understanding of the mechanisms behind their interactions, and it has been found that NPBAs produce different interfacial bonding effects on RDX and HMX. To gain deeper insights into the molecular-scale interfacial interactions of nitramine explosives/NPBAs, this study investigated the molecular electrostatic potentials, intermolecular interactions, surface structural features, and interfacial adsorption of a NPBA onto nitramine explosives using the density functional theory and molecular dynamics (MD) technique. The results indicate that the N atom on the cyano group of the NPBA molecule can form weak hydrogen bonds C–H⋅⋅⋅NC and C–H⋅⋅⋅O with the H atoms in the RDX and HMX molecules. The strength of such weak hydrogen bonding interactions is affected by the electrostatic potential range of nitramine molecules. Additionally, the surface structure of the nitramine plays a critical role in the NPBA adsorption strength. Compared to HMX, RDX exhibits a narrower surface electrostatic potential range and smoother crystal surface, resulting in weaker intermolecular interactions between the NPBA and the RDX surface.
事实证明,中性聚合物粘接剂(NPBAs)在增强粘接基体与环三亚甲基三硝胺(RDX)和环四亚甲基三硝胺(HMX)等硝胺炸药之间的界面粘接方面非常有效。然而,人们对其相互作用背后的机制还缺乏清晰的认识,而且发现 NPBA 对 RDX 和 HMX 产生不同的界面键合效应。为了深入了解硝胺炸药/NPBA 的分子尺度界面相互作用,本研究利用密度泛函理论和分子动力学(MD)技术研究了 NPBA 在硝胺炸药上的分子静电势、分子间相互作用、表面结构特征以及界面吸附。结果表明,NPBA 分子氰基上的 N 原子可与 RDX 和 HMX 分子中的 H 原子形成 C-H⋅⋅⋅N C 和 C-H⋅⋅⋅O 弱氢键。这种弱氢键相互作用的强度受到硝胺分子静电电位范围的影响。此外,硝胺的表面结构对 NPBA 吸附强度也起着关键作用。与 HMX 相比,RDX 的表面静电势范围更窄,晶面更光滑,因此 NPBA 与 RDX 表面之间的分子间相互作用更弱。
{"title":"Interactions between a neutral polymeric bonding agent and nitramine explosives and their influencing factors","authors":"","doi":"10.1016/j.enmf.2024.03.002","DOIUrl":"10.1016/j.enmf.2024.03.002","url":null,"abstract":"<div><div>Neutral polymer bonding agents (NPBAs) have proven highly effective in enhancing the interfacial bonding between the bonding matrix and nitramine explosives such as cyclic trimethylene trinitramine (RDX) and cyclic tetramethylene trinitramine (HMX). However, there is a lack of clear understanding of the mechanisms behind their interactions, and it has been found that NPBAs produce different interfacial bonding effects on RDX and HMX. To gain deeper insights into the molecular-scale interfacial interactions of nitramine explosives/NPBAs, this study investigated the molecular electrostatic potentials, intermolecular interactions, surface structural features, and interfacial adsorption of a NPBA onto nitramine explosives using the density functional theory and molecular dynamics (MD) technique. The results indicate that the N atom on the cyano group of the NPBA molecule can form weak hydrogen bonds C–H⋅⋅⋅N<img>C and C–H⋅⋅⋅O with the H atoms in the RDX and HMX molecules. The strength of such weak hydrogen bonding interactions is affected by the electrostatic potential range of nitramine molecules. Additionally, the surface structure of the nitramine plays a critical role in the NPBA adsorption strength. Compared to HMX, RDX exhibits a narrower surface electrostatic potential range and smoother crystal surface, resulting in weaker intermolecular interactions between the NPBA and the RDX surface.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 248-256"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time X-ray diffraction measurement on laser shock-loaded hexanitrostilbene (HNS) 激光冲击载荷己酮二苯乙烯(HNS)的实时 X 射线衍射测量
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.04.002
Understanding the lattice evolution of hexanitrostilbene (HNS) is crucial for ensuring its safety and reliability under shock loading. However, the lack of in situ, real-time diagnostics has limited the availability of lattice parameters for shock-loaded explosives. In this study, we utilized dynamic X-ray diffraction technology to obtain the diffraction spectrum of laser shock-loaded HNS and to determine its temporal evolution. Additionally, by improving the laser energy, we initiated HNS and obtained the diffraction spectrum of detonation products during the detonation process. The experimental results showed the presence of a diamond structure in the detonation product, suggesting the existence of either diamond or diamond-like carbon. Our research not only elucidates the crystal structure of shock-loaded HNS and its detonation products but also provides an avenue for laboratory-scale investigations into dynamically loaded explosives, which furnishing an opportunity to unveil the underlying mechanism governing explosive dynamic response behavior.
了解己酮二苯乙烯(HNS)的晶格演变对于确保其在冲击载荷下的安全性和可靠性至关重要。然而,由于缺乏原位实时诊断技术,限制了冲击加载炸药晶格参数的可用性。在本研究中,我们利用动态 X 射线衍射技术获得了激光冲击加载 HNS 的衍射谱,并确定了其时间演变。此外,通过提高激光能量,我们启动了 HNS 并获得了引爆过程中引爆产物的衍射谱。实验结果表明,引爆产物中存在金刚石结构,这表明存在金刚石或类金刚石碳。我们的研究不仅阐明了冲击载荷 HNS 及其引爆产物的晶体结构,还为实验室规模的动态载荷炸药研究提供了途径,为揭示炸药动态响应行为的内在机制提供了机会。
{"title":"Real-time X-ray diffraction measurement on laser shock-loaded hexanitrostilbene (HNS)","authors":"","doi":"10.1016/j.enmf.2024.04.002","DOIUrl":"10.1016/j.enmf.2024.04.002","url":null,"abstract":"<div><div>Understanding the lattice evolution of hexanitrostilbene (HNS) is crucial for ensuring its safety and reliability under shock loading. However, the lack of <em>in situ</em>, real-time diagnostics has limited the availability of lattice parameters for shock-loaded explosives. In this study, we utilized dynamic X-ray diffraction technology to obtain the diffraction spectrum of laser shock-loaded HNS and to determine its temporal evolution. Additionally, by improving the laser energy, we initiated HNS and obtained the diffraction spectrum of detonation products during the detonation process. The experimental results showed the presence of a diamond structure in the detonation product, suggesting the existence of either diamond or diamond-like carbon. Our research not only elucidates the crystal structure of shock-loaded HNS and its detonation products but also provides an avenue for laboratory-scale investigations into dynamically loaded explosives, which furnishing an opportunity to unveil the underlying mechanism governing explosive dynamic response behavior.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 224-231"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141056347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of inkjet printing using micro-nano CL-20-based PVA colloidal suspension with desensitization to MEMS-based pyrotechnics 微纳CL-20基PVA胶体悬浮液对MEMS烟火减敏喷墨打印的应用
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2023.06.004
The micro-scale detonation sequence prepared by the inkjet printing using all-liquid 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazawurtzitan (CL-20)-based energetic inks enables the micro-space fine-scale assembly and stable propagation of detonation. However, the easy crystallization and high mechanical sensitivity of all-liquid CL-20 limit its applications to the microelectromechanical system (MEMS)-based pyrotechnics. This study developed a simple micro-nano CL-20-based polyvinyl alcohol (PVA) colloidal suspension suitable for inkjet printing to control the crystal structures and mechanical sensitivities of energetic composites. The results show that the CL-20-based multilayer films formed by inkjet printing had dense microstructures, with the porosity decreasing to 13.81% and ε-type crystals. Compared with micro-nano CL-20 particles, the impact and friction sensitivities of CL-20-based multilayer films were reduced by 100% and 122%, respectively, and their apparent activation energy increased by 44.7 ​kJ ​mol−1, thus effectively improving the safety performance of micro-nano structured explosive agents. Therefore, CL-20-based multilayer films have great potential for application to the micro-scale detonation sequence of MEMS.
使用全液体 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazawurtzitan (CL-20)基高能油墨进行喷墨打印制备的微尺度引爆序列可实现微空间精细组装和引爆的稳定传播。然而,全液体 CL-20 的易结晶性和高机械敏感性限制了其在基于微机电系统 (MEMS) 的烟火中的应用。本研究开发了一种适合喷墨打印的基于 CL-20 的聚乙烯醇(PVA)胶体悬浮液,用于控制高能复合材料的晶体结构和机械灵敏度。结果表明,通过喷墨打印形成的基于 CL-20 的多层膜具有致密的微观结构,孔隙率降至 13.81%,并具有ε型晶体。与微纳 CL-20 颗粒相比,CL-20 基多层膜的冲击敏感性和摩擦敏感性分别降低了 100%和 122%,表观活化能提高了 44.7 kJ mol-1,从而有效提高了微纳结构爆炸药的安全性能。因此,CL-20 基多层膜在微米尺度的微机电系统起爆序列中具有很大的应用潜力。
{"title":"Application of inkjet printing using micro-nano CL-20-based PVA colloidal suspension with desensitization to MEMS-based pyrotechnics","authors":"","doi":"10.1016/j.enmf.2023.06.004","DOIUrl":"10.1016/j.enmf.2023.06.004","url":null,"abstract":"<div><div>The micro-scale detonation sequence prepared by the inkjet printing using all-liquid 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazawurtzitan (CL-20)-based energetic inks enables the micro-space fine-scale assembly and stable propagation of detonation. However, the easy crystallization and high mechanical sensitivity of all-liquid CL-20 limit its applications to the microelectromechanical system (MEMS)-based pyrotechnics. This study developed a simple micro-nano CL-20-based polyvinyl alcohol (PVA) colloidal suspension suitable for inkjet printing to control the crystal structures and mechanical sensitivities of energetic composites. The results show that the CL-20-based multilayer films formed by inkjet printing had dense microstructures, with the porosity decreasing to 13.81% and ε-type crystals. Compared with micro-nano CL-20 particles, the impact and friction sensitivities of CL-20-based multilayer films were reduced by 100% and 122%, respectively, and their apparent activation energy increased by 44.7 ​kJ ​mol<sup>−1</sup>, thus effectively improving the safety performance of micro-nano structured explosive agents. Therefore, CL-20-based multilayer films have great potential for application to the micro-scale detonation sequence of MEMS.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 199-207"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43058995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new sulfur-containing laser-sensitive primary explosive based on thiazole-4-carbohydrazide 基于噻唑-4-甲酰肼的新型含硫激光敏感原爆物
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.02.005
This study effectively synthesized thiazole-4-carbohydrazide (SZCA) and its ionic salt SZCA·HClO4 and energetic complex Cu(SZCA)2(ClO4)2 (ECC-1). The new compound SZCA, SZCA·HClO4 and ECC-1 were fully characterized through elemental analysis, infrared spectroscopy, 13C NMR spectroscopy and thermal stability analysis. The combustion heat of ECC-1 was measured by oxygen bomb calorimetry, and its detonation performance was predicted by Kamlet-Jacobs formula and EXPLO5, respectively. The mechanical sensitivity of ECC-1 was tested using BAM method. In particular, we comprehensively evaluated the initiation ability of ECC-1 through lead plate destruction experiment and laser initiation experiment. The results show that ECC-1 have a decomposition temperature of 236 °C, exhibits acceptable mechanical sensitivity (impact sensitivity: 3.4 J, friction sensitivity: 4 N), and decent detonation properties (D: 6.6 km s−1, P: 21.3 GPa). And ECC-1 could be initiated by a single-pulse laser (λ: 808 nm, P: 20 W, t: 3 ms), and successfully detonated the next charge, such as RDX and CL-20.
本研究有效合成了噻唑-4-甲酰肼(SZCA)及其离子盐 SZCA-HClO4,以及高能络合物 Cu(SZCA)2(ClO4)2(ECC-1)。通过元素分析、红外光谱、13C NMR 光谱和热稳定性分析,对新化合物 SZCA、SZCA-HClO4 和 ECC-1 进行了全面表征。氧弹量热法测量了 ECC-1 的燃烧热,并分别用 Kamlet-Jacobs 公式和 EXPLO5 预测了其引爆性能。采用 BAM 法测试了 ECC-1 的机械敏感性。特别是,我们通过铅板破坏实验和激光起爆实验全面评估了 ECC-1 的起爆能力。结果表明,ECC-1 的分解温度为 236 ℃,具有可接受的机械灵敏度(冲击灵敏度:3.4 J,摩擦灵敏度:4 N)和良好的起爆性能(D:6.6 km s-1,P:21.3 GPa)。单脉冲激光(λ:808 nm,P:20 W,t:3 ms)可触发 ECC-1,并成功引爆下一个装药,如 RDX 和 CL-20。
{"title":"A new sulfur-containing laser-sensitive primary explosive based on thiazole-4-carbohydrazide","authors":"","doi":"10.1016/j.enmf.2024.02.005","DOIUrl":"10.1016/j.enmf.2024.02.005","url":null,"abstract":"<div><div>This study effectively synthesized thiazole-4-carbohydrazide (SZCA) and its ionic salt SZCA·HClO<sub>4</sub> and energetic complex Cu(SZCA)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub> (<strong>ECC-1</strong>). The new compound SZCA, SZCA·HClO<sub>4</sub> and <strong>ECC-1</strong> were fully characterized through elemental analysis, infrared spectroscopy, <sup>13</sup>C NMR spectroscopy and thermal stability analysis. The combustion heat of <strong>ECC-1</strong> was measured by oxygen bomb calorimetry, and its detonation performance was predicted by Kamlet-Jacobs formula and EXPLO5, respectively. The mechanical sensitivity of <strong>ECC-1</strong> was tested using BAM method. In particular, we comprehensively evaluated the initiation ability of <strong>ECC-1</strong> through lead plate destruction experiment and laser initiation experiment. The results show that <strong>ECC-1</strong> have a decomposition temperature of 236 °C, exhibits acceptable mechanical sensitivity (impact sensitivity: 3.4 J, friction sensitivity: 4 N), and decent detonation properties (<em>D</em>: 6.6 km s<sup>−1</sup>, <em>P</em>: 21.3 GPa). And <strong>ECC-1</strong> could be initiated by a single-pulse laser (λ: 808 nm, <em>P</em>: 20 W, <em>t</em>: 3 ms), and successfully detonated the next charge, such as RDX and CL-20.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 191-198"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139886297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual control over the reignition and combustion performance of hydroxylammonium nitrate-based gel propellants 对硝酸羟铵基凝胶推进剂的复燃和燃烧性能进行双重控制
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.03.005
Hydroxylammonium nitrate (HAN; NH3OH + NO3), a green and non-toxic monopropellant, finds wide application in liquid and controllable solid propulsion. Gel propulsion enjoys advantages such as a high throttling capacity and encouraging operational safety. This study prepared three HAN-based gel propellant samples with gelling agent contents ranging from 2 to 4 wt%. Their decomposition processes were analyzed using thermogravimetry (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS), and a microthruster was designed to investigate their combustion characteristics under varying voltages and flow rates. Results reveal the presence of three exothermic peaks in the HAN-based gel propellants at temperatures of 204, 306 °C and 441 °C. The gel propellants experienced violent decomposition between 100 °C and 400 °C, producing low-molecular-weight organics such as C3H8, C2H6, H2O, O2, and NH3. For the initial ignition, the flow rate exerts a greater effect of reducing the delay time than the voltage. The reignition exhibited a shorter delay time than the initial ignition, and increasing voltage led to a more significant decrease in the reignition delay time than increasing the flow rate. Under a gelling agent content of approximately 4 wt%, the reignition delay time decreased from 2.35 s to 0.65 s as the voltage increased from 150 V to 250 V, with the flame length and light intensity during the reignition greater than those in the initial ignition. At the end of combustion, the extinguishment delay time changed insignificantly under high voltage. As revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses, residues with numerous cavities emerged due to incomplete combustion and the severe agglomeration of the gel propellants, exhibiting a maximum chlorine content of up to 77.73%.
硝酸羟铵(HAN;NH3OH + NO3-)是一种绿色无毒的单质推进剂,在液体和可控固体推进剂中应用广泛。凝胶推进剂具有节流能力强、操作安全等优点。本研究制备了三种基于 HAN 的凝胶推进剂样品,其胶凝剂含量为 2 至 4 wt%。使用热重仪(TG)、差示扫描量热仪(DSC)和质谱仪(MS)分析了它们的分解过程,并设计了一个微型推进器来研究它们在不同电压和流速下的燃烧特性。结果显示,HAN 基凝胶推进剂在 204、306 和 441 °C 温度下出现了三个放热峰。凝胶推进剂在 100 °C 至 400 °C 之间发生剧烈分解,产生 C3H8、C2H6、H2O、O2 和 NH3 等低分子量有机物。对于初始点火,流量比电压更能缩短延迟时间。复燃的延迟时间比初始点火的延迟时间短,增加电压比增加流速更能显著缩短复燃延迟时间。在胶凝剂含量约为 4 wt% 的条件下,当电压从 150 V 升至 250 V 时,复燃延迟时间从 2.35 s 缩短至 0.65 s,复燃时的火焰长度和光强均大于初始点火时的火焰长度和光强。燃烧结束时,熄灭延迟时间在高电压下变化不大。扫描电子显微镜(SEM)和能量色散光谱(EDS)分析表明,由于燃烧不完全和凝胶推进剂严重结块,残留物中出现了许多空穴,氯含量最高达 77.73%。
{"title":"Dual control over the reignition and combustion performance of hydroxylammonium nitrate-based gel propellants","authors":"","doi":"10.1016/j.enmf.2024.03.005","DOIUrl":"10.1016/j.enmf.2024.03.005","url":null,"abstract":"<div><div>Hydroxylammonium nitrate (HAN; NH<sub>3</sub>OH <sup>+</sup> NO<sub>3</sub><sup>−</sup>), a green and non-toxic monopropellant, finds wide application in liquid and controllable solid propulsion. Gel propulsion enjoys advantages such as a high throttling capacity and encouraging operational safety. This study prepared three HAN-based gel propellant samples with gelling agent contents ranging from 2 to 4 wt%. Their decomposition processes were analyzed using thermogravimetry (TG), differential scanning calorimetry (DSC), and mass spectrometry (MS), and a microthruster was designed to investigate their combustion characteristics under varying voltages and flow rates. Results reveal the presence of three exothermic peaks in the HAN-based gel propellants at temperatures of 204, 306 °C and 441 °C. The gel propellants experienced violent decomposition between 100 °C and 400 °C, producing low-molecular-weight organics such as C<sub>3</sub>H<sub>8</sub>, C<sub>2</sub>H<sub>6</sub>, H<sub>2</sub>O, O<sub>2</sub>, and NH<sub>3</sub>. For the initial ignition, the flow rate exerts a greater effect of reducing the delay time than the voltage. The reignition exhibited a shorter delay time than the initial ignition, and increasing voltage led to a more significant decrease in the reignition delay time than increasing the flow rate. Under a gelling agent content of approximately 4 wt%, the reignition delay time decreased from 2.35 s to 0.65 s as the voltage increased from 150 V to 250 V, with the flame length and light intensity during the reignition greater than those in the initial ignition. At the end of combustion, the extinguishment delay time changed insignificantly under high voltage. As revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses, residues with numerous cavities emerged due to incomplete combustion and the severe agglomeration of the gel propellants, exhibiting a maximum chlorine content of up to 77.73%.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 239-247"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140398993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensors of thermal deformation for various polymorphic modifications of 2,4-dinitroanisole 2,4-二硝基苯甲醚各种多晶型修饰的热变形张量
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.02.002
The anisotropic characteristics of thermal deformation of ultrapure 2,4-dinitroanisole (2,4-DNAN) crystals were determined by the methods of powder thermorentgenography of the internal standard. The points of structural changes are registered in increments of 10 K, and in the melting region of 2 and 1 K. Calculations of powder X-ray diffraction data are performed by methods of full-profile analysis with a cycle of quantum modeling of the structure of molecules integrated into the algorithm. The Pauli, Le Bail (WPPD), Rietveld (WPPF) and WPPM methods were used as reference methods for full-profile analysis. The main crystallographic axes and characteristic surfaces of the thermal deformation tensor α and β-2,4-DNAN are determined. At atmospheric pressure, the main coefficients of linear (α) and volumetric (β) thermal deformation (expansion) were at 293 K for α-2,4-DNAN with α1(293) = 11,516 × 10−5 K−1, α2(293) = −0,120 × 10−5 K−1, α3(293) = 5,098 × 10−5 K−1, β(293) = 16,333 × 10−5 K−1; at 293 K for β-2,4-DNAN with α1(293) = 13,217 × 10−5 K−1, α2(293) = 0,494 × 10−5 K−1, α3(293) = −8,6504 × 10−5 K−1, β(293) = 6,8191 × 10−5 K−1; at 260 K for β′-2,4-DNAN with α1(260) = 25,214 × 10−5 K−1, α2(260) = −5,823 × 10−5 K−1, α3(260) = 7,741 × 10−5 K−1, β(260) = 27,112 × 10−5 K−1.
超纯 2,4-dinitroanisole (2,4DNAN) 晶体热变形的各向异性特征是通过内标粉末热成像仪方法测定的。结构变化点以 10 K 为增量,在 2 K 和 1 K 的熔化区域进行记录。粉末 X 射线衍射数据的计算是通过全剖面分析方法进行的,算法中集成了分子结构的量子建模循环。保利法、勒贝尔法(WPPD)、里特维尔德法(WPPF)和 WPPM 法被用作全剖面分析的参考方法。确定了热变形张量 α 和 β-2,4-DNAN 的主要晶体学轴线和特征面。在大气压力下,α-2,4-DNAN 的主要线性(α)和体积(β)热变形(膨胀)系数在 293 K 时为 α1(293) = 11,516 × 10-5 K-1,α2(293) = -0,120 × 10-5 K-1,α3(293) = 5,098 × 10-5 K-1,β(293) = 16,333 × 10-5 K-1;293 K 时,β-2,4-DNAN 的 α1(293) = 13,217 × 10-5 K-1,α2(293) = 0,494 × 10-5 K-1,α3(293) = -8,6504 × 10-5 K-1,β(293) = 6,8191 × 10-5 K-1;α1(260) = 25,214 × 10-5 K-1,α2(260) = -5,823 × 10-5 K-1,α3(260) = 7,741 × 10-5 K-1,β(260) = 27,112 × 10-5 K-1。
{"title":"Tensors of thermal deformation for various polymorphic modifications of 2,4-dinitroanisole","authors":"","doi":"10.1016/j.enmf.2024.02.002","DOIUrl":"10.1016/j.enmf.2024.02.002","url":null,"abstract":"<div><div>The anisotropic characteristics of thermal deformation of ultrapure 2,4-dinitroanisole (2,4-DNAN) crystals were determined by the methods of powder thermorentgenography of the internal standard. The points of structural changes are registered in increments of 10 K, and in the melting region of 2 and 1 K. Calculations of powder X-ray diffraction data are performed by methods of full-profile analysis with a cycle of quantum modeling of the structure of molecules integrated into the algorithm. The Pauli, Le Bail (WPPD), Rietveld (WPPF) and WPPM methods were used as reference methods for full-profile analysis. The main crystallographic axes and characteristic surfaces of the thermal deformation tensor α and β-2,4-DNAN are determined. At atmospheric pressure, the main coefficients of linear (<em>α</em>) and volumetric (<em>β</em>) thermal deformation (expansion) were at 293 K for <em>α</em>-2,4-DNAN with <em>α</em><sub><em>1</em></sub>(293) = 11,516 × 10<sup>−5</sup> K<sup>−1</sup>, <em>α</em><sub>2</sub>(293) = −0,120 × 10<sup>−5</sup> K<sup>−1</sup>, <em>α</em><sub><em>3</em></sub>(293) = 5,098 × 10<sup>−5</sup> K<sup>−1</sup>, <em>β</em>(293) = 16,333 × 10<sup>−5</sup> K<sup>−1</sup>; at 293 K for <em>β</em>-2,4-DNAN with <em>α</em><sub><em>1</em></sub>(293) = 13,217 × 10<sup>−5</sup> K<sup>−1</sup>, <em>α</em><sub><em>2</em></sub>(293) = 0,494 × 10<sup>−5</sup> K<sup>−1</sup>, <em>α</em><sub>3</sub>(293) = −8,6504 × 10<sup>−5</sup> K<sup>−1</sup>, <em>β</em>(293) = 6,8191 × 10<sup>−5</sup> K<sup>−1</sup>; at 260 K for <em>β′</em>-2,4-DNAN with <em>α</em><sub><em>1</em></sub>(260) = 25,214 × 10<sup>−5</sup> K<sup>−1</sup>, <em>α</em><sub><em>2</em></sub>(260) = −5,823 × 10<sup>−5</sup> K<sup>−1</sup>, <em>α</em><sub><em>3</em></sub>(260) = 7,741 × 10<sup>−5</sup> K<sup>−1</sup>, <em>β</em>(260) = 27,112 × 10<sup>−5</sup> K<sup>−1</sup>.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 257-266"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Features of the mechanism of pasty propellants burning 糊状推进剂燃烧机理的特点
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2023.10.002
The composition of a pasty propellant for small-sized space engines has been proposed. For this propellant, a research of the burning process was carried out. This research included the determination of the burning rate law, the characteristics of the agglomeration process, and the properties of the surface layer. The presence of an intermediate structure, a skeleton layer, during the burning of such propellants, and the nature of the influence of pressure, additives, and the size of oxidizer particles on this structure, have been established. The determining influence of this structure on the burning process is shown. Composition solutions that provide control over the burning rate law of such propellants are determined. These solutions make it possible to change the absolute value of the burning rate, as well as its dependence on pressure. Regularities of the agglomeration process have been established. These regularities are associated with the features of the formation of the skeleton layer, which depend on the structure of the propellant, pressure, and the presence of additives.
提出了一种用于小型空间发动机的糊状推进剂的成分。对这种推进剂的燃烧过程进行了研究。这项研究包括确定燃烧速率规律、聚结过程的特征以及表层的特性。研究确定了此类推进剂燃烧过程中存在的中间结构--骨架层,以及压力、添加剂和氧化剂颗粒大小对这种结构的影响性质。这种结构对燃烧过程的决定性影响已经显示出来。确定了可控制此类推进剂燃烧速率规律的成分溶液。这些方案可以改变燃烧速率的绝对值及其与压力的关系。确定了聚结过程的规律性。这些规律与骨架层的形成特点有关,而骨架层的形成取决于推进剂的结构、压力和添加剂的存在。
{"title":"Features of the mechanism of pasty propellants burning","authors":"","doi":"10.1016/j.enmf.2023.10.002","DOIUrl":"10.1016/j.enmf.2023.10.002","url":null,"abstract":"<div><div>The composition of a pasty propellant for small-sized space engines has been proposed. For this propellant, a research of the burning process was carried out. This research included the determination of the burning rate law, the characteristics of the agglomeration process, and the properties of the surface layer. The presence of an intermediate structure, a skeleton layer, during the burning of such propellants, and the nature of the influence of pressure, additives, and the size of oxidizer particles on this structure, have been established. The determining influence of this structure on the burning process is shown. Composition solutions that provide control over the burning rate law of such propellants are determined. These solutions make it possible to change the absolute value of the burning rate, as well as its dependence on pressure. Regularities of the agglomeration process have been established. These regularities are associated with the features of the formation of the skeleton layer, which depend on the structure of the propellant, pressure, and the presence of additives.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 232-238"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135760565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and combustion behavior of horizontal two-dimension combustion networks of boron-metal oxides 硼金属氧化物水平二维燃烧网络的构建和燃烧行为
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/j.enmf.2024.08.005
Hao-yu Song, Chen-yang Li, Fu-bing Gao, Chong-wei An, Shi-jiao Li, Xuan Zhan
In order to break through the top-down combustion mode brought by the traditional pillars, it is explored to explore the exploration of delay composition array construction in two-dimensional dimensions. In this study, B-CuO, B-Bi2O3, B-Fe2O3 sticks and combustion networks with good forming properties were prepared with the help of a micro-pen direct ink writing device by dispersing the above materials in DMF with boron and metal oxides as the main body of the charge and F2602 as the binder. The sticks were thermally ignited using a nichrome wire, and the flame propagation behaviors of the sticks with different formulations, spacings and heights were tracked with a high-speed camera, and a series of combustion networks were designed on the premise of not leaping into flames. Results show that the B-CuO stick has the fastest ignition speed level (19.71–29.02 mm ·s−1) at equivalence ratios of 1.0–4.0, followed by B-Bi2O3 (5.99–16.01 mm ·s−1) and B-Fe2O3 is the slowest (1.91–4.94 mm ·s−1). The sticks burned best at an equivalence ratio of 1.0–1.5. A variety of combustion networks were constructed on 50 × 50 mm glass slides by selecting B-CuO, B-Bi2O3, and B-Fe2O3 at the equivalence ratios of 1.0, 1.5, and 1.5, respectively, among which B-CuO had the shortest combustion time (5.17 s), the shortest total combustion network length (252 mm), and 400 mm network could be realized for B-Bi2O3. Construction and 19.85 s, and B-Fe2O3 can realize 608 mm network length and 130.7 s combustion time. Through these studies, the two-dimensional combustion network construction of boron-metal oxides was realized, which provides a new idea for the delay action in small size.
为了突破传统柱状材料带来的自上而下的燃烧模式,探索在二维维度上进行延迟成分阵列构建的探索。本研究借助微型笔式直接墨水书写装置,将上述材料分散在DMF中,以硼和金属氧化物为电荷主体,以F为粘结剂,制备了具有良好成型性能的B-CuO、B-BiO、B-FeO棒和燃烧网络。用镍铬丝对小棒进行热点燃,并用高速摄像机跟踪不同配方、间距和高度的小棒的火焰传播行为,在不蹿火的前提下设计了一系列燃烧网络。结果表明,在当量比为 1.0-4.0 时,B-CuO 棒的点火速度水平最快(19.71-29.02 mm -s),其次是 B-BiO(5.99-16.01 mm -s),B-FeO 最慢(1.91-4.94 mm -s)。在当量比为 1.0-1.5 时,木棒的燃烧效果最好。选择 B-CuO、B-BiO 和 B-FeO,在等效比分别为 1.0、1.5 和 1.5 时,在 50 × 50 毫米的玻璃片上构建了多种燃烧网络,其中 B-CuO 的燃烧时间最短(5.17 秒),燃烧网络总长度最短(252 毫米),B-BiO 可实现 400 毫米的网络。而 B-FeO 可以实现 608 毫米的网络长度和 130.7 秒的燃烧时间。通过这些研究,实现了硼金属氧化物的二维燃烧网络构建,为小尺寸延迟作用提供了新思路。
{"title":"Construction and combustion behavior of horizontal two-dimension combustion networks of boron-metal oxides","authors":"Hao-yu Song,&nbsp;Chen-yang Li,&nbsp;Fu-bing Gao,&nbsp;Chong-wei An,&nbsp;Shi-jiao Li,&nbsp;Xuan Zhan","doi":"10.1016/j.enmf.2024.08.005","DOIUrl":"10.1016/j.enmf.2024.08.005","url":null,"abstract":"<div><div>In order to break through the top-down combustion mode brought by the traditional pillars, it is explored to explore the exploration of delay composition array construction in two-dimensional dimensions. In this study, B-CuO, B-Bi<sub>2</sub>O<sub>3</sub>, B-Fe<sub>2</sub>O<sub>3</sub> sticks and combustion networks with good forming properties were prepared with the help of a micro-pen direct ink writing device by dispersing the above materials in DMF with boron and metal oxides as the main body of the charge and F<sub>2602</sub> as the binder. The sticks were thermally ignited using a nichrome wire, and the flame propagation behaviors of the sticks with different formulations, spacings and heights were tracked with a high-speed camera, and a series of combustion networks were designed on the premise of not leaping into flames. Results show that the B-CuO stick has the fastest ignition speed level (19.71–29.02 mm ·s<sup>−1</sup>) at equivalence ratios of 1.0–4.0, followed by B-Bi<sub>2</sub>O<sub>3</sub> (5.99–16.01 mm ·s<sup>−1</sup>) and B-Fe<sub>2</sub>O<sub>3</sub> is the slowest (1.91–4.94 mm ·s<sup>−1</sup>). The sticks burned best at an equivalence ratio of 1.0–1.5. A variety of combustion networks were constructed on 50 × 50 mm glass slides by selecting B-CuO, B-Bi<sub>2</sub>O<sub>3</sub>, and B-Fe<sub>2</sub>O<sub>3</sub> at the equivalence ratios of 1.0, 1.5, and 1.5, respectively, among which B-CuO had the shortest combustion time (5.17 s), the shortest total combustion network length (252 mm), and 400 mm network could be realized for B-Bi<sub>2</sub>O<sub>3</sub>. Construction and 19.85 s, and B-Fe<sub>2</sub>O<sub>3</sub> can realize 608 mm network length and 130.7 s combustion time. Through these studies, the two-dimensional combustion network construction of boron-metal oxides was realized, which provides a new idea for the delay action in small size.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages 216-223"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Story 封面故事
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/S2666-6472(24)00073-3
{"title":"Cover Story","authors":"","doi":"10.1016/S2666-6472(24)00073-3","DOIUrl":"10.1016/S2666-6472(24)00073-3","url":null,"abstract":"","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Page ii"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphical Abstract 图表摘要
IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-01 DOI: 10.1016/S2666-6472(24)00074-5
{"title":"Graphical Abstract","authors":"","doi":"10.1016/S2666-6472(24)00074-5","DOIUrl":"10.1016/S2666-6472(24)00074-5","url":null,"abstract":"","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 3","pages":"Pages iii-v"},"PeriodicalIF":3.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142437817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Energetic Materials Frontiers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1