Lightweight and privacy-preserving device-to-device authentication to enable secure transitive communication in IoT-based smart healthcare systems

3区 计算机科学 Q1 Computer Science Journal of Ambient Intelligence and Humanized Computing Pub Date : 2024-06-21 DOI:10.1007/s12652-024-04810-1
Sangjukta Das, Maheshwari Prasad Singh, Suyel Namasudra
{"title":"Lightweight and privacy-preserving device-to-device authentication to enable secure transitive communication in IoT-based smart healthcare systems","authors":"Sangjukta Das, Maheshwari Prasad Singh, Suyel Namasudra","doi":"10.1007/s12652-024-04810-1","DOIUrl":null,"url":null,"abstract":"<p>Internet of Things (IoT) devices are often directly authenticated by the gateways within the network. In complex and large systems, IoT devices may be connected to the gateway through another device in the network. In such a scenario, new device should be authenticated with the gateway through the intermediate device. To address this issue, an authentication process is proposed in this paper for IoT-enabled healthcare systems. This approach performs a privacy-preserving mutual authentication between the gateway and an IoT device through intermediate devices, which are already authenticated by the gateway. The proposed approach relies on the session key established during gateway-intermediate device authentication. To emphasizes lightweight and efficient system, the proposed approach employs lightweight cryptographic operations, such as XOR, concatenation, and hash functions within IoT networks. This approach goes beyond the traditional device-to-device authentication, allowing authentication to propagate across multiple devices or nodes in the network. The proposed work establishes a secure session between an authorized device and a gateway, preventing unauthorized devices from accessing healthcare systems. The security of the protocol is validated through a thorough analysis using the AVISPA tool, and its performance is evaluated against existing schemes, demonstrating significantly lower communication and computation costs.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04810-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Things (IoT) devices are often directly authenticated by the gateways within the network. In complex and large systems, IoT devices may be connected to the gateway through another device in the network. In such a scenario, new device should be authenticated with the gateway through the intermediate device. To address this issue, an authentication process is proposed in this paper for IoT-enabled healthcare systems. This approach performs a privacy-preserving mutual authentication between the gateway and an IoT device through intermediate devices, which are already authenticated by the gateway. The proposed approach relies on the session key established during gateway-intermediate device authentication. To emphasizes lightweight and efficient system, the proposed approach employs lightweight cryptographic operations, such as XOR, concatenation, and hash functions within IoT networks. This approach goes beyond the traditional device-to-device authentication, allowing authentication to propagate across multiple devices or nodes in the network. The proposed work establishes a secure session between an authorized device and a gateway, preventing unauthorized devices from accessing healthcare systems. The security of the protocol is validated through a thorough analysis using the AVISPA tool, and its performance is evaluated against existing schemes, demonstrating significantly lower communication and computation costs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在基于物联网的智能医疗系统中,通过轻量级和保护隐私的设备对设备身份验证,实现安全的跨设备通信
物联网(IoT)设备通常由网络内的网关直接验证。在复杂的大型系统中,物联网设备可能会通过网络中的另一个设备连接到网关。在这种情况下,新设备应通过中间设备与网关进行身份验证。为解决这一问题,本文提出了一种适用于物联网医疗系统的身份验证流程。这种方法通过已通过网关认证的中间设备,在网关和物联网设备之间执行保护隐私的相互认证。建议的方法依赖于在网关-中间设备认证过程中建立的会话密钥。为了强调系统的轻量级和高效性,所提出的方法在物联网网络中采用了轻量级加密操作,如 XOR、连接和哈希函数。这种方法超越了传统的设备间身份验证,允许身份验证在网络中的多个设备或节点间传播。所提议的工作可在授权设备和网关之间建立安全会话,防止未经授权的设备访问医疗保健系统。通过使用 AVISPA 工具进行全面分析,验证了该协议的安全性,并对其性能与现有方案进行了评估,结果表明其通信和计算成本大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ambient Intelligence and Humanized Computing
Journal of Ambient Intelligence and Humanized Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.60
自引率
0.00%
发文量
854
期刊介绍: The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to): Pervasive/Ubiquitous Computing and Applications Cognitive wireless sensor network Embedded Systems and Software Mobile Computing and Wireless Communications Next Generation Multimedia Systems Security, Privacy and Trust Service and Semantic Computing Advanced Networking Architectures Dependable, Reliable and Autonomic Computing Embedded Smart Agents Context awareness, social sensing and inference Multi modal interaction design Ergonomics and product prototyping Intelligent and self-organizing transportation networks & services Healthcare Systems Virtual Humans & Virtual Worlds Wearables sensors and actuators
期刊最新文献
Predicting the unconfined compressive strength of stabilized soil using random forest coupled with meta-heuristic algorithms Expressive sign language system for deaf kids with MPEG-4 approach of virtual human character MEDCO: an efficient protocol for data compression in wireless body sensor network A multi-objective gene selection for cancer diagnosis using particle swarm optimization and mutual information Partial policy hidden medical data access control method based on CP-ABE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1