{"title":"Hybrid Particle Swarm Optimized Models for Rainfall Prediction: A Case Study in India","authors":"Chawngthu Zoremsanga, Jamal Hussain","doi":"10.1007/s00024-024-03528-7","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting rainfall is crucial across multiple sectors and activities, impacting agriculture, water management and disaster preparedness. In this study, the Particle Swarm Optimization (PSO) algorithm is used to optimize the hyperparameters of hybrid deep learning and machine learning models such as Bidirectional Long Short-Term Memory (BiLSTM), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), Artificial Neural Network (ANN) and Support Vector Regression (SVR). The performances of the PSO-optimized models are compared using the monthly rainfall dataset of Aizawl Weather Station and the all-India monthly average rainfall dataset. For the all-India rainfall datasets, the results of the PSO models are also compared with models from previous studies. The results show that, for the all-India rainfall dataset, the hybrid model PSO-BiLSTM IV achieved an RMSE of 225.12 and outperformed an existing RNN model by 14% and an existing single-cell LSTM, Vanilla LSTM and stacked LSTM by 11%, 10% and 8% respectively. In the Aizawl Weather Station dataset, the hybrid model PSO-BiLSTM II achieved the best result with an RMSE of 76.6, a benchmark result for this dataset. Overall, the hybrid PSO-BiLSTM models have the lowest RMSE score and the SVR models achieve the lowest performance for both datasets.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 7","pages":"2343 - 2357"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03528-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting rainfall is crucial across multiple sectors and activities, impacting agriculture, water management and disaster preparedness. In this study, the Particle Swarm Optimization (PSO) algorithm is used to optimize the hyperparameters of hybrid deep learning and machine learning models such as Bidirectional Long Short-Term Memory (BiLSTM), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), Artificial Neural Network (ANN) and Support Vector Regression (SVR). The performances of the PSO-optimized models are compared using the monthly rainfall dataset of Aizawl Weather Station and the all-India monthly average rainfall dataset. For the all-India rainfall datasets, the results of the PSO models are also compared with models from previous studies. The results show that, for the all-India rainfall dataset, the hybrid model PSO-BiLSTM IV achieved an RMSE of 225.12 and outperformed an existing RNN model by 14% and an existing single-cell LSTM, Vanilla LSTM and stacked LSTM by 11%, 10% and 8% respectively. In the Aizawl Weather Station dataset, the hybrid model PSO-BiLSTM II achieved the best result with an RMSE of 76.6, a benchmark result for this dataset. Overall, the hybrid PSO-BiLSTM models have the lowest RMSE score and the SVR models achieve the lowest performance for both datasets.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.