Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2024-05-20 DOI:10.1007/s11705-024-2430-4
Baoyu Wu, Hao Sun, Xiaoxue Li, Yinyi Gao, Tianzeng Bao, Hongbin Wu, Kai Zhu, Dianxue Cao
{"title":"Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery","authors":"Baoyu Wu,&nbsp;Hao Sun,&nbsp;Xiaoxue Li,&nbsp;Yinyi Gao,&nbsp;Tianzeng Bao,&nbsp;Hongbin Wu,&nbsp;Kai Zhu,&nbsp;Dianxue Cao","doi":"10.1007/s11705-024-2430-4","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mA·hg<sup>−1</sup> after undergoing full activation through 500 cycles at a density of current of 0.1 A·g<sup>−1</sup>. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g<sup>−1</sup> at a density of current of 0.5 A·g<sup>−1</sup>. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g<sup>−1</sup> after 750 cycles) and a remarkable rate ability (166 mAh·g<sup>−1</sup> at 2 A·g<sup>−1</sup>). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2430-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mA·hg−1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g−1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g−1 at a density of current of 0.5 A·g−1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g−1 after 750 cycles) and a remarkable rate ability (166 mAh·g−1 at 2 A·g−1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过氯化钠模板提取的石油沥青硬碳作为钠离子电池的高倍率负极材料
钠离子电池(SIB)因其与锂离子电池相似的工作机理和丰富的钠资源储量而在储能领域备受关注。探索具有良好电化学性能的碳基负极材料的简便合成方法是促进钠离子电池实际应用的关键。本研究选择石油沥青和可回收氯化钠作为碳源和模板,以获得用于 SIBs 的硬碳(HC)阳极。通过评估不同 HC 材料的钠离子存储行为,对碳化时间和温度进行了优化。在 0.1 A-g-1 的电流密度下,经过 500 个循环的完全活化后,优化后的 HC 显示出超过 430 mA-hg-1 的显著容量。此外,在 0.5 A-g-1 的电流密度下,它的初始放电容量为 276 mAh-g-1。同时,经过优化的 HC 显示出良好的容量保持能力(750 次循环后为 170 mAh-g-1)和显著的速率能力(2 A-g-1 时为 166 mAh-g-1)。容量的提高归功于适当的石墨化程度和表面积,它们改善了钠离子的传输和存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Influence of hydrothermal carbonized sewage sludge on coal water slurry performance Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects Effective lateral dispersion of momentum, heat and mass in bubbling fluidized beds Excellent charge separation over NiCo2S4/CoTiO3 nanocomposites improved photocatalytic hydrogen production Recent progress in the interfacial polymerization process for CO2 separation membrane fabrication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1