{"title":"Fast stiffness variation gripper with efficient adhesion control","authors":"Wenqing Chen, Tianhui Sun, Jingyang Li, Xiaosong Li, Lvzhou Li, Yonggang Meng and Yu Tian","doi":"10.1088/1361-665x/ad5a59","DOIUrl":null,"url":null,"abstract":"The mushroom-shape gecko-inspired adhesive has been extensively studied and applied in a wide range of fields. However, current research primarily focuses on enhancing its adhesion properties, necessitating further exploration in strategies of detachment and adaptation, which significantly constrain its practical applications. In this study, a stiffness variable gripper with controllable adhesion and fast response is developed by integrating mushroom-shape adhesive with granular jamming technology. A theoretical model for the detachment of the gripper is established, indicating the effect of backing stiffness on adhesion performance, which is verified through contact area observations and adhesion experiments. The proposed modulation method demonstrates an impressive adhesion-to-detachment ratio of 92.8, with adhesion capacity of up to 41.023 N and detachment force of only 0.442 N. The switch time is remarkably fast at just 0.5 s. Additionally, the designed gripper, under pressure difference of 60 kPa, is able to stably grasp smooth objects with various shapes weighing over 2 kg, with a load-to-weight ratio of approximately 8, and a minimal power consumption of only 4.404 W. The work here presents a comprehensive understanding of adhesion modulation of fibrillar adhesive through granular jamming, and provides new insights into robust reversible adhesion design for related technologies.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"164 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5a59","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The mushroom-shape gecko-inspired adhesive has been extensively studied and applied in a wide range of fields. However, current research primarily focuses on enhancing its adhesion properties, necessitating further exploration in strategies of detachment and adaptation, which significantly constrain its practical applications. In this study, a stiffness variable gripper with controllable adhesion and fast response is developed by integrating mushroom-shape adhesive with granular jamming technology. A theoretical model for the detachment of the gripper is established, indicating the effect of backing stiffness on adhesion performance, which is verified through contact area observations and adhesion experiments. The proposed modulation method demonstrates an impressive adhesion-to-detachment ratio of 92.8, with adhesion capacity of up to 41.023 N and detachment force of only 0.442 N. The switch time is remarkably fast at just 0.5 s. Additionally, the designed gripper, under pressure difference of 60 kPa, is able to stably grasp smooth objects with various shapes weighing over 2 kg, with a load-to-weight ratio of approximately 8, and a minimal power consumption of only 4.404 W. The work here presents a comprehensive understanding of adhesion modulation of fibrillar adhesive through granular jamming, and provides new insights into robust reversible adhesion design for related technologies.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.