Abdullah Solayman, Baosong Li, Rashid Abu Al-Rub and Kin Liao
{"title":"Three-dimensional free-standing heterostructures out of MoS2 and rGO with infused PDMS towards electromechanical pressure sensing","authors":"Abdullah Solayman, Baosong Li, Rashid Abu Al-Rub and Kin Liao","doi":"10.1088/1361-665x/ad78cd","DOIUrl":null,"url":null,"abstract":"The behavior of two-dimensional (2D) materials constructed as three-dimensional structures is studied to bring such materials one step closer to the real-life application. Lattices structures of gyroid triply periodic minimal surface (TPMS) were fabricated out of 2D materials, namely, molybdenum disulfide (MoS2), and reduced graphene oxide (rGO), forming for the first time free-standing MoS2 (FSM) lattice and free-standing hetero-structural lattice of MoS2 and rGO (FSH) out of TPMS. These 2D materials were also integrated with polydimethylsiloxane (PDMS) elastomer, forming FSM/PDMS and FSH/PDMS composites. Mechanical characterization, including compression and cyclic tests, were conducted on FSM, FSH, and the composites. Additionally, electromechanical characterization was conducted to evaluate the sensing potential of these structures. It is worth noting that the elastic modulus of the 10 unit-cells with either FSM or FSH was higher than the other lattices of the same type. FSH tends to have a higher modulus at 1504.4 kPa in the 10 unit-cells. This modulus is even higher at 3 MPa when PDMS is added to the FSH lattice. Due to the brittle fracture, FSM or FSH lattices follow the layer-by-layer failure mechanism. Samples with PDMS are more stable towards such cyclic tests without noticeable failures or a decrease in elastic modulus. Finally, the 10 unit-cell lattices of FSH/PDMS composite have the highest conductivity at 2.5 mA, and a comparable sensitivity at 0.365 kPa−1 over the range of 0–100 kPa.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad78cd","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The behavior of two-dimensional (2D) materials constructed as three-dimensional structures is studied to bring such materials one step closer to the real-life application. Lattices structures of gyroid triply periodic minimal surface (TPMS) were fabricated out of 2D materials, namely, molybdenum disulfide (MoS2), and reduced graphene oxide (rGO), forming for the first time free-standing MoS2 (FSM) lattice and free-standing hetero-structural lattice of MoS2 and rGO (FSH) out of TPMS. These 2D materials were also integrated with polydimethylsiloxane (PDMS) elastomer, forming FSM/PDMS and FSH/PDMS composites. Mechanical characterization, including compression and cyclic tests, were conducted on FSM, FSH, and the composites. Additionally, electromechanical characterization was conducted to evaluate the sensing potential of these structures. It is worth noting that the elastic modulus of the 10 unit-cells with either FSM or FSH was higher than the other lattices of the same type. FSH tends to have a higher modulus at 1504.4 kPa in the 10 unit-cells. This modulus is even higher at 3 MPa when PDMS is added to the FSH lattice. Due to the brittle fracture, FSM or FSH lattices follow the layer-by-layer failure mechanism. Samples with PDMS are more stable towards such cyclic tests without noticeable failures or a decrease in elastic modulus. Finally, the 10 unit-cell lattices of FSH/PDMS composite have the highest conductivity at 2.5 mA, and a comparable sensitivity at 0.365 kPa−1 over the range of 0–100 kPa.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.