Towards Adiabatic Quantum Computing Using Compressed Quantum Circuits

Conor Mc Keever, Michael Lubasch
{"title":"Towards Adiabatic Quantum Computing Using Compressed Quantum Circuits","authors":"Conor Mc Keever, Michael Lubasch","doi":"10.1103/prxquantum.5.020362","DOIUrl":null,"url":null,"abstract":"We describe tensor network algorithms to optimize quantum circuits for adiabatic quantum computing. To suppress diabatic transitions, we include counterdiabatic driving in the optimization and utilize variational matrix product operators to represent adiabatic gauge potentials. Traditionally, Trotter product formulas are used to turn adiabatic time evolution into quantum circuits and the addition of counterdiabatic driving increases the circuit depth per time step. Instead, we classically optimize a parameterized quantum circuit of fixed depth to simultaneously capture adiabatic evolution together with counterdiabatic driving over many time steps. The methods are applied to the ground-state preparation of quantum Ising chains with transverse and longitudinal fields. We show that the classically optimized circuits can significantly outperform Trotter product formulas. Additionally, we discuss how the approach can be used for combinatorial optimization.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe tensor network algorithms to optimize quantum circuits for adiabatic quantum computing. To suppress diabatic transitions, we include counterdiabatic driving in the optimization and utilize variational matrix product operators to represent adiabatic gauge potentials. Traditionally, Trotter product formulas are used to turn adiabatic time evolution into quantum circuits and the addition of counterdiabatic driving increases the circuit depth per time step. Instead, we classically optimize a parameterized quantum circuit of fixed depth to simultaneously capture adiabatic evolution together with counterdiabatic driving over many time steps. The methods are applied to the ground-state preparation of quantum Ising chains with transverse and longitudinal fields. We show that the classically optimized circuits can significantly outperform Trotter product formulas. Additionally, we discuss how the approach can be used for combinatorial optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用压缩量子电路实现绝热量子计算
我们描述了优化绝热量子计算量子电路的张量网络算法。为了抑制绝热转换,我们在优化中加入了反绝热驱动,并利用变矩阵积算子来表示绝热规势。传统上,特罗特乘积公式用于将绝热时间演化转化为量子电路,而增加反绝热驱动会增加每个时间步的电路深度。相反,我们对固定深度的参数化量子回路进行了经典优化,以在多个时间步长内同时捕捉绝热演化和反绝热驱动。这些方法被应用于具有横向和纵向场的量子伊辛链的基态制备。我们证明,经典优化电路的性能明显优于特罗特乘积公式。此外,我们还讨论了如何将该方法用于组合优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1