Understanding Stochastic Behavior of Self- Rectifying Memristors for Error-Corrected Physical Unclonable Functions

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-06-13 DOI:10.1109/TNANO.2024.3413888
Xianyue Zhao;Jonas Ruchti;Christoph Frisch;Kefeng Li;Ziang Chen;Stephan Menzel;Rainer Waser;Heidemarie Schmidt;Ilia Polian;Michael Pehl;Nan Du
{"title":"Understanding Stochastic Behavior of Self- Rectifying Memristors for Error-Corrected Physical Unclonable Functions","authors":"Xianyue Zhao;Jonas Ruchti;Christoph Frisch;Kefeng Li;Ziang Chen;Stephan Menzel;Rainer Waser;Heidemarie Schmidt;Ilia Polian;Michael Pehl;Nan Du","doi":"10.1109/TNANO.2024.3413888","DOIUrl":null,"url":null,"abstract":"Physical Unclonable Functions (PUFs) have gained widespread attention for their secure key storage, authentication, and anti-counterfeiting applications. While traditional PUFs based on Complementary Metal-Oxide-Semiconductor (CMOS) have been extensively studied, the emergence of memristors offers new opportunities due to their inherent device variations and distinctive resistive switching behaviors. This study explores the construction of reliable PUFs using self-rectifying analog BiFeO\n<inline-formula><tex-math>$_{3}$</tex-math></inline-formula>\n (BFO) memristors. We assess the raw bit error rate (rBER) of the BFO-based PUF under varying voltage challenges and classify the switching behavior into stochastic, transition, and deterministic regions. As the primary objective of this study, we identify the sources of stochastic behavior in the three distinct regions while investigating the physical switching mechanism in BFO cells. Additionally, we propose a key storage method based on memristor variability, including an error correction scheme to enhance the reliability of PUF. This research contributes to a comprehensive understanding of PUF reliability and the underlying sources of intrinsic stochastic behavior in memristive technology.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"490-499"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10557135/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Physical Unclonable Functions (PUFs) have gained widespread attention for their secure key storage, authentication, and anti-counterfeiting applications. While traditional PUFs based on Complementary Metal-Oxide-Semiconductor (CMOS) have been extensively studied, the emergence of memristors offers new opportunities due to their inherent device variations and distinctive resistive switching behaviors. This study explores the construction of reliable PUFs using self-rectifying analog BiFeO $_{3}$ (BFO) memristors. We assess the raw bit error rate (rBER) of the BFO-based PUF under varying voltage challenges and classify the switching behavior into stochastic, transition, and deterministic regions. As the primary objective of this study, we identify the sources of stochastic behavior in the three distinct regions while investigating the physical switching mechanism in BFO cells. Additionally, we propose a key storage method based on memristor variability, including an error correction scheme to enhance the reliability of PUF. This research contributes to a comprehensive understanding of PUF reliability and the underlying sources of intrinsic stochastic behavior in memristive technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理解自整流晶闸管在误差校正物理不可克隆函数中的随机行为
物理不可克隆函数(PUF)因其安全的密钥存储、身份验证和防伪应用而受到广泛关注。虽然基于互补金属氧化物半导体(CMOS)的传统 PUF 已得到广泛研究,但由于其固有的器件变化和独特的电阻开关行为,忆阻器的出现提供了新的机遇。本研究利用自校正模拟 BiFeO$_{3}$ (BFO)忆阻器探索构建可靠的 PUF。我们评估了基于 BFO 的 PUF 在不同电压挑战下的原始误码率 (rBER),并将开关行为分为随机、过渡和确定区域。作为本研究的主要目标,我们在研究 BFO 单元物理开关机制的同时,确定了三个不同区域中随机行为的来源。此外,我们还提出了一种基于忆阻器变异性的密钥存储方法,包括一种可提高 PUF 可靠性的纠错方案。这项研究有助于全面了解 PUF 的可靠性以及忆阻器技术内在随机行为的基本来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET Experimental Investigations and Characterization of Surfactant Activated Mixed Metal Oxide (MMO) Nanomaterial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1