DeepSpoof: Deep Reinforcement Learning-Based Spoofing Attack in Cross-Technology Multimedia Communication

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-06-20 DOI:10.1109/TMM.2024.3414660
Demin Gao;Liyuan Ou;Ye Liu;Qing Yang;Honggang Wang
{"title":"DeepSpoof: Deep Reinforcement Learning-Based Spoofing Attack in Cross-Technology Multimedia Communication","authors":"Demin Gao;Liyuan Ou;Ye Liu;Qing Yang;Honggang Wang","doi":"10.1109/TMM.2024.3414660","DOIUrl":null,"url":null,"abstract":"Cross-technology communication is essential for the Internet of Multimedia Things (IoMT) applications, enabling seamless integration of diverse media formats, optimized data transmission, and improved user experiences across devices and platforms. This integration drives innovative and efficient IoMT solutions in areas like smart homes, smart cities, and healthcare monitoring. However, this integration of diverse wireless standards within cross-technology multimedia communication increases the susceptibility of wireless networks to attacks. Current methods lack robust authentication mechanisms, leaving them vulnerable to spoofing attacks. To mitigate this concern, we introduce DeepSpoof, a spoofing system that utilizes deep learning to analyze historical wireless traffic and anticipate future patterns in the IoMT context. This innovative approach significantly boosts an attacker's impersonation capabilities and offers a higher degree of covertness compared to traditional spoofing methods. Rigorous evaluations, leveraging both simulated and real-world data, confirm that DeepSpoof significantly elevates the average success rate of attacks.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10879-10891"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10566040/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-technology communication is essential for the Internet of Multimedia Things (IoMT) applications, enabling seamless integration of diverse media formats, optimized data transmission, and improved user experiences across devices and platforms. This integration drives innovative and efficient IoMT solutions in areas like smart homes, smart cities, and healthcare monitoring. However, this integration of diverse wireless standards within cross-technology multimedia communication increases the susceptibility of wireless networks to attacks. Current methods lack robust authentication mechanisms, leaving them vulnerable to spoofing attacks. To mitigate this concern, we introduce DeepSpoof, a spoofing system that utilizes deep learning to analyze historical wireless traffic and anticipate future patterns in the IoMT context. This innovative approach significantly boosts an attacker's impersonation capabilities and offers a higher degree of covertness compared to traditional spoofing methods. Rigorous evaluations, leveraging both simulated and real-world data, confirm that DeepSpoof significantly elevates the average success rate of attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepSpoof:跨技术多媒体通信中基于深度强化学习的欺骗攻击
跨技术通信对于多媒体物联网(IoMT)应用至关重要,它可实现不同媒体格式的无缝集成、优化数据传输,并改善跨设备和平台的用户体验。这种集成推动了智能家居、智能城市和医疗监控等领域创新而高效的 IoMT 解决方案。然而,在跨技术多媒体通信中整合不同的无线标准,增加了无线网络遭受攻击的可能性。目前的方法缺乏强大的验证机制,容易受到欺骗攻击。为了缓解这一问题,我们引入了 DeepSpoof,这是一种利用深度学习分析历史无线通信量并预测 IoMT 未来模式的欺骗系统。与传统的欺骗方法相比,这种创新方法大大提高了攻击者的假冒能力,并提供了更高的隐蔽性。利用模拟数据和真实数据进行的严格评估证实,DeepSpoof 能显著提高攻击的平均成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Phase-shifted tACS can modulate cortical alpha waves in human subjects. Guest Editorial Introduction to the Issue on Pre-Trained Models for Multi-Modality Understanding Zero-Shot Video Moment Retrieval With Angular Reconstructive Text Embeddings Toward Efficient Video Compression Artifact Detection and Removal: A Benchmark Dataset Human-Centric Behavior Description in Videos: New Benchmark and Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1