{"title":"A selective separation method for microplastics using ultrasonic jet atomization","authors":"Hiroshi Matsuura, Hiromitsu Furukawa, Atsushi Kondo, Hiroki Kurita, Takuya Toyoshi, Yoshinori Watanabe, Tamio Tanikawa and Hideki Hashimoto","doi":"10.35848/1347-4065/ad5128","DOIUrl":null,"url":null,"abstract":"This paper reveals that ultrasonic jet atomization using a diaphragm enables the enclosure of microplastics in water into atomized mist, emitting them into the air. In particular, a strong correlation is found between the sizes of the atomized mist and the acrylic particles enclosed in the mist: Acrylic particles with an average diameter of 1.5 μm or smaller are selectively enclosed within the atomized mist with an average diameter of 2.2 μm. This result indicates that jet atomization has the ability to select particles with diameters of 1.5 μm or less from numerous micro-particles with different diameters and separate them into individual particles without aggregation. The results of this study can be applicable to the process of analyzing microplastics dispersed in rivers, lakes, and oceans for separating particles of a targeted diameter from numerous particles of different diameters without aggregation.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad5128","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reveals that ultrasonic jet atomization using a diaphragm enables the enclosure of microplastics in water into atomized mist, emitting them into the air. In particular, a strong correlation is found between the sizes of the atomized mist and the acrylic particles enclosed in the mist: Acrylic particles with an average diameter of 1.5 μm or smaller are selectively enclosed within the atomized mist with an average diameter of 2.2 μm. This result indicates that jet atomization has the ability to select particles with diameters of 1.5 μm or less from numerous micro-particles with different diameters and separate them into individual particles without aggregation. The results of this study can be applicable to the process of analyzing microplastics dispersed in rivers, lakes, and oceans for separating particles of a targeted diameter from numerous particles of different diameters without aggregation.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS