High-Performance Supercapacitor with Plasma-Assisted AlN and Graphitic Carbon Nitride Composite Electrode

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-21 DOI:10.1021/acsaelm.4c00632
Kumaresan Lakshmanan, Selvakumar Chidambaram, Shanmugavelayutham Gurusamy
{"title":"High-Performance Supercapacitor with Plasma-Assisted AlN and Graphitic Carbon Nitride Composite Electrode","authors":"Kumaresan Lakshmanan, Selvakumar Chidambaram, Shanmugavelayutham Gurusamy","doi":"10.1021/acsaelm.4c00632","DOIUrl":null,"url":null,"abstract":"Developing low-cost, highly conductive, and porous electrode materials for superior electrochemical energy storage applications is indeed a challenging task, particularly in large-scale production without any impurities. The present investigation centers on the synthesis of a mesoporous nanocomposite material comprising highly conductive graphitic carbon nitride (g-CN) enveloping aluminum nitride (AlN) nanoparticles, denoted as AlN/g-CN, designed for enhanced supercapacitor performance. The AlN/g-CN nanocomposite was synthesized through a thermal plasma arc discharge process utilizing nitrogen (N<sub>2</sub>) and ammonia (NH<sub>3</sub>) gas environments, starting with AlN nanoparticles. Concurrently, the g-CN component was synthesized using a straightforward pyrolysis approach starting from melamine. Subsequently, the formation of the highly mesoporous AlN/g-CN nanocomposite was accomplished via a facile ultrasonication process. The phase, crystal structure, morphology, elemental composition, and chemical state analysis of the prepared sample were investigated. The electrochemical performance of the prepared samples, including AlN, g-CN, and AlN/g-CN electrodes, was assessed for their suitability in electrochemical capacitor applications. Notably, the AlN/g-CN nanocomposites exhibited remarkable electrochemical pseudocapacitive behavior, showcasing a substantially higher specific capacitance of 434.1 F/g at a current density of 1 A/g. Additionally, the AlN/g-CN electrode displayed outstanding cycling stability, retaining 93.2% of its initial capacitance after 5000 charge–discharge cycles at a current density of 10 A/g. The maximum energy density of 6.52 Wh/kg is achieved at a power density of 269.7 W/kg. These findings underscore the potential of mesoporous AlN/g-CN nanocomposites as promising electrode materials in the context of supercapacitor applications.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c00632","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Developing low-cost, highly conductive, and porous electrode materials for superior electrochemical energy storage applications is indeed a challenging task, particularly in large-scale production without any impurities. The present investigation centers on the synthesis of a mesoporous nanocomposite material comprising highly conductive graphitic carbon nitride (g-CN) enveloping aluminum nitride (AlN) nanoparticles, denoted as AlN/g-CN, designed for enhanced supercapacitor performance. The AlN/g-CN nanocomposite was synthesized through a thermal plasma arc discharge process utilizing nitrogen (N2) and ammonia (NH3) gas environments, starting with AlN nanoparticles. Concurrently, the g-CN component was synthesized using a straightforward pyrolysis approach starting from melamine. Subsequently, the formation of the highly mesoporous AlN/g-CN nanocomposite was accomplished via a facile ultrasonication process. The phase, crystal structure, morphology, elemental composition, and chemical state analysis of the prepared sample were investigated. The electrochemical performance of the prepared samples, including AlN, g-CN, and AlN/g-CN electrodes, was assessed for their suitability in electrochemical capacitor applications. Notably, the AlN/g-CN nanocomposites exhibited remarkable electrochemical pseudocapacitive behavior, showcasing a substantially higher specific capacitance of 434.1 F/g at a current density of 1 A/g. Additionally, the AlN/g-CN electrode displayed outstanding cycling stability, retaining 93.2% of its initial capacitance after 5000 charge–discharge cycles at a current density of 10 A/g. The maximum energy density of 6.52 Wh/kg is achieved at a power density of 269.7 W/kg. These findings underscore the potential of mesoporous AlN/g-CN nanocomposites as promising electrode materials in the context of supercapacitor applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用等离子体辅助氮化铝和氮化石墨碳复合电极的高性能超级电容器
为卓越的电化学储能应用开发低成本、高导电性和多孔电极材料确实是一项具有挑战性的任务,尤其是在无任何杂质的大规模生产方面。本研究的重点是合成一种介孔纳米复合材料,该材料由高导电性氮化石墨碳(g-CN)和氮化铝(AlN)纳米颗粒组成,称为 AlN/g-CN,旨在提高超级电容器的性能。AlN/g-CN 纳米复合材料是利用氮气(N2)和氨气(NH3)气体环境,从 AlN 纳米颗粒开始,通过热等离子弧放电工艺合成的。同时,以三聚氰胺为原料,采用直接热解方法合成了 g-CN 成分。随后,通过简便的超声处理过程形成了高度介孔的 AlN/g-CN 纳米复合材料。研究了所制备样品的相位、晶体结构、形貌、元素组成和化学状态分析。评估了所制备样品(包括 AlN、g-CN 和 AlN/g-CN 电极)的电化学性能,以确定其在电化学电容器应用中的适用性。值得注意的是,AlN/g-CN 纳米复合材料表现出显著的电化学伪电容行为,在电流密度为 1 A/g 时,比电容高达 434.1 F/g。此外,AlN/g-CN 电极还表现出出色的循环稳定性,在 10 A/g 的电流密度下,经过 5000 次充放电循环后,其初始电容仍能保持 93.2%。在功率密度为 269.7 W/kg 时,最大能量密度达到 6.52 Wh/kg。这些发现强调了介孔 AlN/g-CN 纳米复合材料在超级电容器应用中作为电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1