Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-20 DOI:10.1021/acsaelm.4c01308
Manoharan Muruganathan, Md. Zahidul Islam, Afsal Kareekunnan, Yosuke Onda, Masashi Hattori, Hiroshi Mizuta
{"title":"Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors","authors":"Manoharan Muruganathan, Md. Zahidul Islam, Afsal Kareekunnan, Yosuke Onda, Masashi Hattori, Hiroshi Mizuta","doi":"10.1021/acsaelm.4c01308","DOIUrl":null,"url":null,"abstract":"Graphene, with its high surface area, is an important sensing material but lacks selectivity. As tin oxide has a higher selectivity for ethanol, we fabricated a graphene field-effect transistor (GFET) sensor functionalized with tin nanoparticles (Sn NPs) to enhance its selectivity and sensitivity for ethanol detection. Among 200 nm, 500 nm, 1 μm, and 2 μm channel sizes, 1 nm thickness Sn NPs functionalized on 200 nm GFET sensors exhibited high sensitivity and selective detection of ethanol and ammonia among five tested gases in a real air environment. Moreover, they demonstrated high sensitivity for ethanol and ammonia, detecting concentrations as low as 100 ppb at room temperature. The postfabrication thermal annealing facilitates the formation of Sn NP clusters and voids within the smaller 200 nm graphene channel, contributing to the sensor’s high sensitivity. Furthermore, the catalytic reaction of ethanol and ammonia molecules with oxygen molecules in the presence of Sn NPs releases electrons, which are reflected in n-doping in the graphene sensor measurements. The potential of this highly sensitive and selective ethanol and ammonia detection of graphene sensors can be utilized with machine learning techniques in the sensor cluster to identify different gases.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c01308","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene, with its high surface area, is an important sensing material but lacks selectivity. As tin oxide has a higher selectivity for ethanol, we fabricated a graphene field-effect transistor (GFET) sensor functionalized with tin nanoparticles (Sn NPs) to enhance its selectivity and sensitivity for ethanol detection. Among 200 nm, 500 nm, 1 μm, and 2 μm channel sizes, 1 nm thickness Sn NPs functionalized on 200 nm GFET sensors exhibited high sensitivity and selective detection of ethanol and ammonia among five tested gases in a real air environment. Moreover, they demonstrated high sensitivity for ethanol and ammonia, detecting concentrations as low as 100 ppb at room temperature. The postfabrication thermal annealing facilitates the formation of Sn NP clusters and voids within the smaller 200 nm graphene channel, contributing to the sensor’s high sensitivity. Furthermore, the catalytic reaction of ethanol and ammonia molecules with oxygen molecules in the presence of Sn NPs releases electrons, which are reflected in n-doping in the graphene sensor measurements. The potential of this highly sensitive and selective ethanol and ammonia detection of graphene sensors can be utilized with machine learning techniques in the sensor cluster to identify different gases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用锡纳米粒子功能化石墨烯传感器实现室温下真实空气中乙醇和氨分子的高灵敏度和选择性检测
石墨烯具有高表面积,是一种重要的传感材料,但缺乏选择性。由于氧化锡对乙醇有较高的选择性,我们制作了一种用锡纳米粒子(Sn NPs)功能化的石墨烯场效应晶体管(GFET)传感器,以提高其对乙醇检测的选择性和灵敏度。在 200 nm、500 nm、1 μm 和 2 μm 沟道尺寸中,在 200 nm GFET 传感器上功能化的 1 nm 厚锡纳米粒子在真实空气环境中对五种测试气体中的乙醇和氨气具有高灵敏度和选择性检测能力。此外,它们对乙醇和氨气的灵敏度也很高,在室温下可检测到低至 100 ppb 的浓度。制造后的热退火有利于在较小的 200 nm 石墨烯通道内形成 Sn NP 簇和空隙,从而提高了传感器的灵敏度。此外,在 Sn NPs 的存在下,乙醇和氨分子与氧分子的催化反应会释放出电子,这反映在石墨烯传感器测量的 n 掺杂中。这种石墨烯传感器对乙醇和氨的高灵敏度和选择性检测潜力可与传感器集群中的机器学习技术相结合,用于识别不同的气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1