Nitrogen-Doped Graphene-Ti3C2Tx Quasi-3D Heterostructures Interfacial Interaction for High-Temperature Vibrational Piezoelectric Energy Harvesting Application

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-20 DOI:10.1021/acsaelm.4c00509
Lijie Kou, Rad Sadri, Shaheed Auwal, Manpreet Kaur, Nai Shyan Lai, Edward P. L. Roberts, Muhammad Aniq Shazni Mohammad Haniff, Masuri Othman, Chang Fu Dee, Poh Choon Ooi
{"title":"Nitrogen-Doped Graphene-Ti3C2Tx Quasi-3D Heterostructures Interfacial Interaction for High-Temperature Vibrational Piezoelectric Energy Harvesting Application","authors":"Lijie Kou, Rad Sadri, Shaheed Auwal, Manpreet Kaur, Nai Shyan Lai, Edward P. L. Roberts, Muhammad Aniq Shazni Mohammad Haniff, Masuri Othman, Chang Fu Dee, Poh Choon Ooi","doi":"10.1021/acsaelm.4c00509","DOIUrl":null,"url":null,"abstract":"Piezoelectric nanogenerators (PENG) can face challenges when integrated into high-temperature applications because of their high-temperature sensitivity. Heterostructures of specific 2D nanomaterials can potentially enhance the PENG performance for practical applications at high temperatures. Hence, this study incorporates nitrogen-doped graphene (NGr) and Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene heterostructure nanofillers into the polyvinylidene difluoride (PVDF) matrix for energy harvesting in a high-temperature vibration environment. The reproducible and stable all-solution fabrication is achieved by optimizing the appropriate ratio of the NGr-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> ratio. At room temperature, the nanogenerator showed an optimum output voltage of ∼9.0 V and ∼1.5 μA of current. Thereby, it increased to 24.0 V and 1.75 μA when the temperature increased to 90 °C, obtaining a power density of 3.85 μW/cm<sup>2</sup>. This outstanding performance is attributed to the designed NGr-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> quasi-3D heterostructure, where its rich interfacial features, excellent electrical conductivity, and localized elastic complexes synergistically promote the piezoelectric output of the energy harvester. Placing the device on the road could be used to collect the mechanical energy generated by the vibration of the car’s movement and convert it into electrical energy, which opens up new development possibilities for addressing emerging energy issues.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c00509","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric nanogenerators (PENG) can face challenges when integrated into high-temperature applications because of their high-temperature sensitivity. Heterostructures of specific 2D nanomaterials can potentially enhance the PENG performance for practical applications at high temperatures. Hence, this study incorporates nitrogen-doped graphene (NGr) and Ti3C2Tx MXene heterostructure nanofillers into the polyvinylidene difluoride (PVDF) matrix for energy harvesting in a high-temperature vibration environment. The reproducible and stable all-solution fabrication is achieved by optimizing the appropriate ratio of the NGr-Ti3C2Tx ratio. At room temperature, the nanogenerator showed an optimum output voltage of ∼9.0 V and ∼1.5 μA of current. Thereby, it increased to 24.0 V and 1.75 μA when the temperature increased to 90 °C, obtaining a power density of 3.85 μW/cm2. This outstanding performance is attributed to the designed NGr-Ti3C2Tx quasi-3D heterostructure, where its rich interfacial features, excellent electrical conductivity, and localized elastic complexes synergistically promote the piezoelectric output of the energy harvester. Placing the device on the road could be used to collect the mechanical energy generated by the vibration of the car’s movement and convert it into electrical energy, which opens up new development possibilities for addressing emerging energy issues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮掺杂石墨烯-Ti3C2Tx 准三维异质结构在高温振动压电能量收集应用中的界面相互作用
压电纳米发电机(PENG)因其高温敏感性,在集成到高温应用中时可能会面临挑战。特定二维纳米材料的异质结构有可能提高压电纳米发电机在高温下的实际应用性能。因此,本研究将氮掺杂石墨烯(NGr)和 Ti3C2Tx MXene 异质结构纳米填料加入聚偏二氟乙烯(PVDF)基体中,用于高温振动环境下的能量收集。通过优化适当的 NGr-Ti3C2Tx 比例,实现了可重复和稳定的全溶液制造。室温下,纳米发电机的最佳输出电压为 9.0 V,电流为 1.5 μA。当温度升至 90 ℃ 时,输出电压增至 24.0 V,电流增至 1.75 μA,功率密度达到 3.85 μW/cm2。这种出色的性能归功于所设计的 NGr-Ti3C2Tx 准三维异质结构,其丰富的界面特征、优异的导电性和局部弹性复合物协同促进了能量收集器的压电输出。将该装置放置在道路上,可用于收集汽车运动振动产生的机械能并将其转化为电能,这为解决新兴能源问题提供了新的发展可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1