{"title":"Learning a quantum channel from its steady-state","authors":"Yigal Ilin and Itai Arad","doi":"10.1088/1367-2630/ad5464","DOIUrl":null,"url":null,"abstract":"We present a scalable method for learning local quantum channels using local expectation values measured on a single state—their steady state. Our method is inspired by the algorithms for learning local Hamiltonians from their ground states. For it to succeed, the steady state must be non-trivial, and therefore the channel needs to be non-unital. Such non-unital channels are readily implementable on present day quantum computers using mid-circuit measurements or RESET gates. We demonstrate that the full structure of such channels is encoded in their steady states, and can be learned efficiently using only the expectation values of local observables on these states. We emphasize two immediate applications to illustrate our approach: (i) Using engineered dissipative dynamics, we offer a straightforward way to assess the accuracy of a given noise model in a regime where all qubits are actively utilized for a significant duration. (ii) Given a parameterized noise model for the entire system, our method can learn its underlying parameters. We demonstrate both applications using numerical simulations and experimental trials conducted on an IBMQ machine.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"14 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad5464","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a scalable method for learning local quantum channels using local expectation values measured on a single state—their steady state. Our method is inspired by the algorithms for learning local Hamiltonians from their ground states. For it to succeed, the steady state must be non-trivial, and therefore the channel needs to be non-unital. Such non-unital channels are readily implementable on present day quantum computers using mid-circuit measurements or RESET gates. We demonstrate that the full structure of such channels is encoded in their steady states, and can be learned efficiently using only the expectation values of local observables on these states. We emphasize two immediate applications to illustrate our approach: (i) Using engineered dissipative dynamics, we offer a straightforward way to assess the accuracy of a given noise model in a regime where all qubits are actively utilized for a significant duration. (ii) Given a parameterized noise model for the entire system, our method can learn its underlying parameters. We demonstrate both applications using numerical simulations and experimental trials conducted on an IBMQ machine.
期刊介绍:
New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.