Coherent electron phase-space manipulation by combined elastic and inelastic light-electron scattering

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-15 DOI:10.1088/1367-2630/ad7631
S T Kempers, I J M van Elk, K A H van Leeuwen and O J Luiten
{"title":"Coherent electron phase-space manipulation by combined elastic and inelastic light-electron scattering","authors":"S T Kempers, I J M van Elk, K A H van Leeuwen and O J Luiten","doi":"10.1088/1367-2630/ad7631","DOIUrl":null,"url":null,"abstract":"Photon-Induced Near-field Electron Microscopy (PINEM), Kapitza–Dirac (KD) gratings, and ponderomotive phase plates are examples of techniques in which the wave function of an electron in free space is manipulated using light fields: free electron quantum optics (FEQO). These effects are usually treated in separate theoretical frameworks. In this paper we present a unified, two-pronged framework that can be used to describe and numerically evaluate the performance of a number of FEQO-based electron-optical elements. The first part is a combination of existing analytical treatments of light-electron scattering, based on solving a relativistically corrected Schrödinger equation. The theoretical overview covers both second-order contributions to PINEM and the Kapitza–Dirac effect. The second, novel element of the approach is based on electron wavefront reconstruction by evaluating the quantum mechanical phase along a bundle of classical electron trajectories. The quasi-classical (but fully relativistic) approach lends itself to simulating a wide variety of FEQO devices, including the examples mentioned. We apply both approaches to a few specific experimental configurations: mirror-based first-order PINEM, second-order PINEM in very high laser intensity, and Kapitza–Dirac diffraction. The results show excellent agreement between the analytical results and the quasi-classical simulations. Finally, we propose a setup that combines KD and PINEM to allow for simultaneous coherent energy and transverse momentum shaping of an electron beam, and present simulation results thereof.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad7631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Photon-Induced Near-field Electron Microscopy (PINEM), Kapitza–Dirac (KD) gratings, and ponderomotive phase plates are examples of techniques in which the wave function of an electron in free space is manipulated using light fields: free electron quantum optics (FEQO). These effects are usually treated in separate theoretical frameworks. In this paper we present a unified, two-pronged framework that can be used to describe and numerically evaluate the performance of a number of FEQO-based electron-optical elements. The first part is a combination of existing analytical treatments of light-electron scattering, based on solving a relativistically corrected Schrödinger equation. The theoretical overview covers both second-order contributions to PINEM and the Kapitza–Dirac effect. The second, novel element of the approach is based on electron wavefront reconstruction by evaluating the quantum mechanical phase along a bundle of classical electron trajectories. The quasi-classical (but fully relativistic) approach lends itself to simulating a wide variety of FEQO devices, including the examples mentioned. We apply both approaches to a few specific experimental configurations: mirror-based first-order PINEM, second-order PINEM in very high laser intensity, and Kapitza–Dirac diffraction. The results show excellent agreement between the analytical results and the quasi-classical simulations. Finally, we propose a setup that combines KD and PINEM to allow for simultaneous coherent energy and transverse momentum shaping of an electron beam, and present simulation results thereof.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过弹性和非弹性光电子联合散射操纵相干电子相空间
光子诱导近场电子显微镜(PINEM)、Kapitza-Dirac(KD)光栅和思索动量相板是利用光场操纵自由空间中电子波函数的技术:自由电子量子光学(FEQO)。这些效应通常在不同的理论框架中进行处理。在本文中,我们提出了一个双管齐下的统一框架,可用于描述和数值评估一些基于 FEQO 的电子光学元件的性能。第一部分结合了现有的光电子散射分析方法,基于相对论修正的薛定谔方程求解。理论概述涵盖了对 PINEM 和 Kapitza-Dirac 效应的二阶贡献。该方法的第二个新要素是通过评估沿经典电子轨迹束的量子力学相位来重建电子波前。这种准经典(但完全相对论)方法适用于模拟各种 FEQO 器件,包括上述例子。我们将这两种方法应用于一些特定的实验配置:基于镜面的一阶 PINEM、极高激光强度下的二阶 PINEM 以及 Kapitza-Dirac 衍射。结果表明,分析结果与准经典模拟结果非常吻合。最后,我们提出了一种结合 KD 和 PINEM 的装置,可以同时对电子束进行相干能量和横向动量整形,并给出了模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1