{"title":"Robust Contact by Direct Formation of C‐Au Bond in Suspended Armchair Graphene Nanoribbon","authors":"Abdou Hassanien","doi":"10.1002/pssr.202400192","DOIUrl":null,"url":null,"abstract":"The Schottky contact between metal electrode and armchair graphene nanoribbon (AGNR) plays a fundamental role in limiting the current flow as well as the overall device characteristics. To improve device performance, the metal electrode must be engineered to lower barrier height and allow low‐resistance ohmic contact. Nevertheless, in most cases this gives rise to interfacial states which dictate the contact properties and induce Fermi level pinning. Here we demonstrate another strategy to form robust and transparent 7‐atom‐wide‐AGNR (7‐AGNR)/Au contacts in which direct C‐Au σ bond is initialized by the tip of scanning tunneling microscope (STM) on a dehydrogenated terminus. This process has led to a total lift‐off of 7‐AGNR from the Au(111) substrate and allowed us to visualize the details of the band structure of 7‐AGNR. Furthermore, we find GNR useful as a STM tip for high‐resolution selective imaging of edge states showing a unique interference pattern with a periodicity that coincides with half of Fermi wavelength of GNR lattice. The combination of imaging and tunneling spectroscopy with GNR‐tip is promising for unraveling intrinsic details in the band structure which are of fundamental importance to understand the transport properties of GNRs devices.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400192","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Schottky contact between metal electrode and armchair graphene nanoribbon (AGNR) plays a fundamental role in limiting the current flow as well as the overall device characteristics. To improve device performance, the metal electrode must be engineered to lower barrier height and allow low‐resistance ohmic contact. Nevertheless, in most cases this gives rise to interfacial states which dictate the contact properties and induce Fermi level pinning. Here we demonstrate another strategy to form robust and transparent 7‐atom‐wide‐AGNR (7‐AGNR)/Au contacts in which direct C‐Au σ bond is initialized by the tip of scanning tunneling microscope (STM) on a dehydrogenated terminus. This process has led to a total lift‐off of 7‐AGNR from the Au(111) substrate and allowed us to visualize the details of the band structure of 7‐AGNR. Furthermore, we find GNR useful as a STM tip for high‐resolution selective imaging of edge states showing a unique interference pattern with a periodicity that coincides with half of Fermi wavelength of GNR lattice. The combination of imaging and tunneling spectroscopy with GNR‐tip is promising for unraveling intrinsic details in the band structure which are of fundamental importance to understand the transport properties of GNRs devices.This article is protected by copyright. All rights reserved.
期刊介绍:
Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers.
The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.