{"title":"Calculation of the decomposition products of C5F10O-Air mixtures from 500 K to 3500 K with a chemical kinetic model","authors":"Qingqing Gao, Xiaohua Wang, Haofei Sun, Aijun Yang, Chunping Niu","doi":"10.1007/s11090-024-10485-5","DOIUrl":null,"url":null,"abstract":"<div><p>C<sub>5</sub>F<sub>10</sub>O-Air mixtures have a great potential to replace SF<sub>6</sub> in medium-voltage power equipment. However, during the partial overheating or arc discharge, C<sub>5</sub>F<sub>10</sub>O-Air mixtures are inevitably to decompose to form various byproducts. The local chemical non-equilibrium and local thermal non-equilibrium appears due to the finite reaction rates and insufficient energy change between species. This paper establishes a chemical kinetic model to calculate the decomposition byproducts of C<sub>5</sub>F<sub>10</sub>O-Air mixtures from 500 K to 3500 K by taking into account the local thermal non-equilibrium and local chemical non-equilibrium simultaneously. The chemical kinetic model contains 50 species and 249 reactions. All the reactions are assumed to be reversible except the reactions producing photos. The local thermal non-equilibrium is characterized by the difference of the electron temperature (<i>T</i><sub>e</sub>) and the temperature of heavy species (<i>T</i><sub>h</sub>). In this work, the ratio of <i>T</i><sub>e</sub> to <i>T</i><sub>h</sub> is determined to be a function of the electron number density. Therefore, the value varies with electron number density. The temperature dependent decomposition composition of C<sub>5</sub>F<sub>10</sub>O-Air mixtures with C<sub>5</sub>F<sub>10</sub>O content to be 5%, 10% and 15% are obtained. In order to investigate the effects of Air on the decomposition of C<sub>5</sub>F<sub>10</sub>O, the decomposition products of pure C<sub>5</sub>F<sub>10</sub>O from 500 K to 3500 K are also investigated. In addition, the main chemical processes in 0.1C<sub>5</sub>F<sub>10</sub>O-0.9Air mixture are investigated by capturing the main reaction pathways. The main reaction pathways can help interpret the formation mechanism of the decomposition products.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1883 - 1903"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10485-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
C5F10O-Air mixtures have a great potential to replace SF6 in medium-voltage power equipment. However, during the partial overheating or arc discharge, C5F10O-Air mixtures are inevitably to decompose to form various byproducts. The local chemical non-equilibrium and local thermal non-equilibrium appears due to the finite reaction rates and insufficient energy change between species. This paper establishes a chemical kinetic model to calculate the decomposition byproducts of C5F10O-Air mixtures from 500 K to 3500 K by taking into account the local thermal non-equilibrium and local chemical non-equilibrium simultaneously. The chemical kinetic model contains 50 species and 249 reactions. All the reactions are assumed to be reversible except the reactions producing photos. The local thermal non-equilibrium is characterized by the difference of the electron temperature (Te) and the temperature of heavy species (Th). In this work, the ratio of Te to Th is determined to be a function of the electron number density. Therefore, the value varies with electron number density. The temperature dependent decomposition composition of C5F10O-Air mixtures with C5F10O content to be 5%, 10% and 15% are obtained. In order to investigate the effects of Air on the decomposition of C5F10O, the decomposition products of pure C5F10O from 500 K to 3500 K are also investigated. In addition, the main chemical processes in 0.1C5F10O-0.9Air mixture are investigated by capturing the main reaction pathways. The main reaction pathways can help interpret the formation mechanism of the decomposition products.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.