pH Sensitive Dual Cross‐Linked Anionic and Amphoteric Interpenetrating Network Hydrogels for Adsorptive Removal of Anionic and Cationic Dyes

IF 2.8 4区 化学 Q1 CHEMISTRY, ORGANIC Asian Journal of Organic Chemistry Pub Date : 2024-10-01 DOI:10.1002/ajoc.202400238
{"title":"pH Sensitive Dual Cross‐Linked Anionic and Amphoteric Interpenetrating Network Hydrogels for Adsorptive Removal of Anionic and Cationic Dyes","authors":"","doi":"10.1002/ajoc.202400238","DOIUrl":null,"url":null,"abstract":"<div><div>The contamination of water by organic dye compounds are worldwide environmental problem due to their highly toxic nature. To address this environmental issue, a simple technique with highly efficient dye removal was developed to prepare pH‐ sensitive dual‐crosslinked anionic and amphoteric interpenetrating network (IPN) hydrogels based on Na‐carboxymethyl cellulose (Na‐CMC) using jute stick‐based cellulose. Crosslinked Na‐CMC and crosslinked κ‐carrageenan (KC) were interlaced by H‐bonding in anionic IPN hydrogel (An‐gel), but crosslinked Na‐CMC and crosslinked Chitosan (CS) were interlaced by electrostatic interaction in amphoteric IPN hydrogel (Am‐gel). In various operating conditions (pH, temperature, etc.) An‐gel displayed a higher number of swelling ratios of about 2560% at pH 7.2 and Am‐gel of about 1874% at pH 5.5. Based on the point of zero charge, An‐gel achieved the maximum removal efficiency of 81.62 % for methylene blue (MB) at pH 7.2, whereas Am‐gel achieved 85.38% removal efficiency for eosin yellow (EY) at pH 5.5. The adsorption kinetics of IPN hydrogels followed a pseudo‐second order model and best fitted by Langmuir isotherm model. The removal efficiency of MB and EY decreased slightly with increasing temperature. The values of ΔH°, ΔG°, and ΔS° indicated an exothermic, spontaneous, and disordered adsorption process.</div></div>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"13 10","pages":"Article e202400238"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2193580724002861","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The contamination of water by organic dye compounds are worldwide environmental problem due to their highly toxic nature. To address this environmental issue, a simple technique with highly efficient dye removal was developed to prepare pH‐ sensitive dual‐crosslinked anionic and amphoteric interpenetrating network (IPN) hydrogels based on Na‐carboxymethyl cellulose (Na‐CMC) using jute stick‐based cellulose. Crosslinked Na‐CMC and crosslinked κ‐carrageenan (KC) were interlaced by H‐bonding in anionic IPN hydrogel (An‐gel), but crosslinked Na‐CMC and crosslinked Chitosan (CS) were interlaced by electrostatic interaction in amphoteric IPN hydrogel (Am‐gel). In various operating conditions (pH, temperature, etc.) An‐gel displayed a higher number of swelling ratios of about 2560% at pH 7.2 and Am‐gel of about 1874% at pH 5.5. Based on the point of zero charge, An‐gel achieved the maximum removal efficiency of 81.62 % for methylene blue (MB) at pH 7.2, whereas Am‐gel achieved 85.38% removal efficiency for eosin yellow (EY) at pH 5.5. The adsorption kinetics of IPN hydrogels followed a pseudo‐second order model and best fitted by Langmuir isotherm model. The removal efficiency of MB and EY decreased slightly with increasing temperature. The values of ΔH°, ΔG°, and ΔS° indicated an exothermic, spontaneous, and disordered adsorption process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于吸附去除阴离子和阳离子染料的 pH 值敏感型双交联阴离子和两性互穿网络水凝胶
有机染料因其剧毒性而成为世界性的环境问题。为了解决这一环境问题,我们开发了一种高效去除染料的简单技术,利用黄麻棒纤维素制备了基于 Na- 羧甲基纤维素(Na-CMC)的 pH 值敏感的双交联阴离子和两性互穿网络(IPN)水凝胶。在阴离子 IPN 水凝胶(An-gel)中,交联的 Na-CMC 和交联的 k-卡拉胶(KC)通过 H 键交错;而在两性 IPN 水凝胶(Am-gel)中,交联的 Na-CMC 和交联的壳聚糖(CS)通过静电作用交错。在不同的操作条件(pH 值、温度等)下,An-凝胶在 pH 值为 7.2 时的溶胀率约为 2560%,而 Am-凝胶在 pH 值为 5.5 时的溶胀率约为 1874%。根据零电荷点,An-凝胶在 pH 值为 7.2 时对亚甲蓝(MB)的去除率最高,达到 81.6%,而 Am-凝胶在 pH 值为 5.5 时对曙红(EY)的去除率最高,达到 85.3%。IPN 水凝胶的吸附动力学遵循伪二阶模型,与 Langmuir 等温线模型的拟合度最高。随着温度的升高,MB 和 EY 的去除率略有下降。ΔH°、ΔS°和ΔG°的值表明这是一个放热、自发和无序的吸附过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
3.70%
发文量
372
期刊介绍: Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC) The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.
期刊最新文献
TEMPO‐Mediated Cross‐Dehydrogenative Coupling for the Synthesis of Bis(indolyl)methanes Front Cover: Pd-Monothiosquaramides: Efficient Catalysts for the Enantioselective Imine Reduction of Dihydro-β-Carbolines (Asian J. Org. Chem. 11/2024) Cover Feature: Diastereoselective Synthesis of Meso-1,2-Diarylethane-1,2-Diamines Via Sodium Reduction of Imidazolines (Asian J. Org. Chem. 11/2024) Front Cover: Direct In Situ Polymer Modification of Titania Nanomaterial Surfaces via UV-irradiated Radical Polymerization (Asian J. Org. Chem. 10/2024) Pd(0)/TPPMS‐Catalyzed Tsuji–Trost Type Cross‐Coupling of Allylic Alcohols with Organoboron Compounds in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1