Generation of chiral optical vortex lattice for controlled aggregation of particles

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-03 DOI:10.1063/5.0214498
X. B. Yang, H. Zhang, M. M. Tang, H. X. Ma, Y. P. Tai, X. Z. Li
{"title":"Generation of chiral optical vortex lattice for controlled aggregation of particles","authors":"X. B. Yang, H. Zhang, M. M. Tang, H. X. Ma, Y. P. Tai, X. Z. Li","doi":"10.1063/5.0214498","DOIUrl":null,"url":null,"abstract":"The chiral light field has attracted great attention owing to its interaction with chiral matter. The generation of chiral light fields with rich structures has become crucial as it can expand application scenarios. Herein, we introduce a chiral optical vortex lattice. As a whole, the optical vortex lattice has a chiral intensity distribution, with each spiral arm having sub-vortices (chiral phase). By using an expansion factor to adjust the involute of a circular lattice, this helical optical vortex lattice can be continuously varied from a circular lattice. The chirality of intensity and phase can be controlled independently. Furthermore, the optical tweezers using the lattice demonstrate the capability of sub-vortices to manipulate particle movement, with the chiral intensity determining the trajectory of particle motion. As the lattice possesses both intensity and phase chirality, it may also find potential applications in tasks such as chiral structure microfabrication.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0214498","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The chiral light field has attracted great attention owing to its interaction with chiral matter. The generation of chiral light fields with rich structures has become crucial as it can expand application scenarios. Herein, we introduce a chiral optical vortex lattice. As a whole, the optical vortex lattice has a chiral intensity distribution, with each spiral arm having sub-vortices (chiral phase). By using an expansion factor to adjust the involute of a circular lattice, this helical optical vortex lattice can be continuously varied from a circular lattice. The chirality of intensity and phase can be controlled independently. Furthermore, the optical tweezers using the lattice demonstrate the capability of sub-vortices to manipulate particle movement, with the chiral intensity determining the trajectory of particle motion. As the lattice possesses both intensity and phase chirality, it may also find potential applications in tasks such as chiral structure microfabrication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成手性光学涡晶格以控制粒子聚集
手性光场因其与手性物质的相互作用而备受关注。如何产生具有丰富结构的手性光场变得至关重要,因为它可以拓展应用场景。在此,我们介绍一种手性光学涡晶格。从整体上看,光学漩涡晶格具有手性强度分布,每个旋臂都有子漩涡(手性相)。通过使用膨胀因子来调整圆晶格的渐开线,这种螺旋光漩涡晶格可以在圆晶格的基础上不断变化。强度和相位的手性可以独立控制。此外,使用该晶格的光镊还展示了子漩涡操纵粒子运动的能力,手性强度决定了粒子的运动轨迹。由于晶格同时具有强度和相位手性,它还可能在手性结构微加工等任务中找到潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Defects and oxygen impurities in ferroelectric wurtzite Al1−xScxN alloys Layer-resolved vector magnetometry using generalized magneto-optical ellipsometry Ultra-low stress-hysteresis and huge superelasticity in NiMn-based shape memory microwire Cubic Mn3Ge thin films stabilized through epitaxial growth as a candidate noncollinear antiferromagnet A fast-switching low-loss field-stop IGBT with dual control gate of SIPOS material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1