A compact acoustic metamaterial based on Helmholtz resonators with side slits for low-frequency sound absorption

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-03 DOI:10.1063/5.0212688
Xingyu Chen, Feiyang Sun, Jing Zhang, Gaorui Chen, Liyue Xu, Li Fan, Liping Cheng, Xiaodong Xu, Yunteng Chen, Jiexin Zhou, Liangping Li, Shaoping Yang
{"title":"A compact acoustic metamaterial based on Helmholtz resonators with side slits for low-frequency sound absorption","authors":"Xingyu Chen, Feiyang Sun, Jing Zhang, Gaorui Chen, Liyue Xu, Li Fan, Liping Cheng, Xiaodong Xu, Yunteng Chen, Jiexin Zhou, Liangping Li, Shaoping Yang","doi":"10.1063/5.0212688","DOIUrl":null,"url":null,"abstract":"The advancement of acoustic metamaterials enables the highly efficient absorption of low-frequency noise with a subwavelength structure thickness, but the complexity of these structures often hinders their large-scale practical applications. Here, we propose a straightforward and compact acoustic metamaterial structure composed of Helmholtz resonators with side slits (HRSS) for low-frequency noise absorption. The introduction of side slits not only simplifies the overall structure but also allows for easy adjustment of acoustic characteristics. By adjusting the depth of the resonator within the slit across 25 distinct units, an absorption coefficient above 0.8 is realized from 470 to 930 Hz. This work demonstrates the extensive low-frequency sound absorption capability of HRSS, providing valuable insights into the design of future practical acoustic materials.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0212688","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of acoustic metamaterials enables the highly efficient absorption of low-frequency noise with a subwavelength structure thickness, but the complexity of these structures often hinders their large-scale practical applications. Here, we propose a straightforward and compact acoustic metamaterial structure composed of Helmholtz resonators with side slits (HRSS) for low-frequency noise absorption. The introduction of side slits not only simplifies the overall structure but also allows for easy adjustment of acoustic characteristics. By adjusting the depth of the resonator within the slit across 25 distinct units, an absorption coefficient above 0.8 is realized from 470 to 930 Hz. This work demonstrates the extensive low-frequency sound absorption capability of HRSS, providing valuable insights into the design of future practical acoustic materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于带侧缝的亥姆霍兹谐振器的紧凑型声超材料,用于低频吸音
声学超材料的发展使我们能够以亚波长的结构厚度高效吸收低频噪声,但这些结构的复杂性往往阻碍了它们的大规模实际应用。在此,我们提出了一种由带侧缝(HRSS)的亥姆霍兹谐振器组成的简单紧凑的声超材料结构,用于吸收低频噪声。侧缝的引入不仅简化了整体结构,而且便于调整声学特性。通过调整谐振器在狭缝内 25 个不同单元的深度,可实现从 470 到 930 Hz 超过 0.8 的吸声系数。这项工作展示了 HRSS 广泛的低频吸声能力,为未来实用声学材料的设计提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Thermal detector based on a suspended polyimide membrane for infrared radiation applications Silicon-based microscale-oscillating heat pipes for high power and high heat flux operation Spin reorientation in premartensite and austenite Ni–Mn–Ga Transcranial thermoacoustic imaging based on the fast back-projection algorithm with nonuniform speed of sound layering Mechanically strong and room-temperature magnetocaloric monolayer VSi2N4 semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1