{"title":"Chemical Proteomics–Guided Discovery of Covalent Ligands for Cancer Proteins","authors":"Xiaoyu Zhang, Benjamin F. Cravatt","doi":"10.1146/annurev-cancerbio-061421-041946","DOIUrl":null,"url":null,"abstract":"Advances in genome sequencing and editing technologies have enriched our understanding of the biochemical pathways that drive tumorigenesis. Translating this knowledge into new medicines for cancer treatment, however, remains challenging, and many oncogenic proteins have proven recalcitrant to conventional approaches for chemical probe and drug discovery. Here, we discuss how innovations in chemical proteomics and covalent chemistry are being integrated to identify and advance first-in-class small molecules that target cancer-relevant proteins. Mechanistic studies have revealed that covalent compounds perturb protein functions in cancer cells in diverse ways that include the remodeling of protein–protein and protein–RNA complexes, as well as through alterations in posttranslational modification. We speculate on the attributes of chemical proteomics and covalent chemistry that have enabled targeting of previously inaccessible cancer-relevant pathways and consider technical challenges that remain to be addressed in order to fully realize the druggability of the cancer proteome.","PeriodicalId":501431,"journal":{"name":"Annual Review of Cancer Biology","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-cancerbio-061421-041946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in genome sequencing and editing technologies have enriched our understanding of the biochemical pathways that drive tumorigenesis. Translating this knowledge into new medicines for cancer treatment, however, remains challenging, and many oncogenic proteins have proven recalcitrant to conventional approaches for chemical probe and drug discovery. Here, we discuss how innovations in chemical proteomics and covalent chemistry are being integrated to identify and advance first-in-class small molecules that target cancer-relevant proteins. Mechanistic studies have revealed that covalent compounds perturb protein functions in cancer cells in diverse ways that include the remodeling of protein–protein and protein–RNA complexes, as well as through alterations in posttranslational modification. We speculate on the attributes of chemical proteomics and covalent chemistry that have enabled targeting of previously inaccessible cancer-relevant pathways and consider technical challenges that remain to be addressed in order to fully realize the druggability of the cancer proteome.