Dominik A. H. Fuchs, Shivani P. Wadgaonkar, Axel H. E. Müller, Holger Frey
{"title":"Effect of tetrahydrofuran on the anionic copolymerization of 4‐trimethylsilylstyrene with isoprene","authors":"Dominik A. H. Fuchs, Shivani P. Wadgaonkar, Axel H. E. Müller, Holger Frey","doi":"10.1002/pat.6478","DOIUrl":null,"url":null,"abstract":"The statistical anionic copolymerization of 4‐trimethylsilylstyrene (TMSS) with isoprene (I) in cyclohexane was investigated using in situ near‐infrared (NIR) spectroscopy in the presence of various amounts of the polar modifier tetrahydrofuran (THF). Polymers with narrow molecular weight distribution of 85–138 kg/mol and dispersities of 1.09–1.22 were obtained. By increasing modifier content, the reactivity ratios can be adjusted over a wide range from <jats:italic>r</jats:italic><jats:sub>TMSS</jats:sub> < <jats:italic>r</jats:italic><jats:sub>I</jats:sub> to <jats:italic>r</jats:italic><jats:sub>TMSS</jats:sub> >> <jats:italic>r</jats:italic><jats:sub>I</jats:sub>. Compared to the system styrene/isoprene (S/I) only a minute amount of modifier (0.5 eq THF relative to lithium) is sufficient to alter the reactivity ratios, resulting in an ideally random copolymerization, which validates the higher reactivity of TMSS compared to styrene. Using these reactivity ratios, molar and volume composition gradients were calculated. Additionally, the glass transition temperature and microstructure of the polyisoprene units were investigated via differential scanning calorimetry and proton nuclear magnetic resonance. The results are encouraging for the use of these materials in high‐end applications like membranes.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"20 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6478","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The statistical anionic copolymerization of 4‐trimethylsilylstyrene (TMSS) with isoprene (I) in cyclohexane was investigated using in situ near‐infrared (NIR) spectroscopy in the presence of various amounts of the polar modifier tetrahydrofuran (THF). Polymers with narrow molecular weight distribution of 85–138 kg/mol and dispersities of 1.09–1.22 were obtained. By increasing modifier content, the reactivity ratios can be adjusted over a wide range from rTMSS < rI to rTMSS >> rI. Compared to the system styrene/isoprene (S/I) only a minute amount of modifier (0.5 eq THF relative to lithium) is sufficient to alter the reactivity ratios, resulting in an ideally random copolymerization, which validates the higher reactivity of TMSS compared to styrene. Using these reactivity ratios, molar and volume composition gradients were calculated. Additionally, the glass transition temperature and microstructure of the polyisoprene units were investigated via differential scanning calorimetry and proton nuclear magnetic resonance. The results are encouraging for the use of these materials in high‐end applications like membranes.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.