Age resistant low density peroxide cured EPDM rubber insulation for large rocket motors

IF 3.1 4区 工程技术 Q2 POLYMER SCIENCE Polymers for Advanced Technologies Pub Date : 2024-09-19 DOI:10.1002/pat.6585
I. Kingstone Lesley Jabez, Urmila Das, Nakka Sudarshan, R. Sheena Rani, B. V. Paparao
{"title":"Age resistant low density peroxide cured EPDM rubber insulation for large rocket motors","authors":"I. Kingstone Lesley Jabez, Urmila Das, Nakka Sudarshan, R. Sheena Rani, B. V. Paparao","doi":"10.1002/pat.6585","DOIUrl":null,"url":null,"abstract":"Novel methodology introduced to incorporate peroxide in the rubber matrix led to successful development of peroxide cured EPDM insulation based on precipitated silica, a conventional filler. Effect of Silica Filler on the physical, mechanical, thermal, ablative properties and thermal degradation of such an insulation has been recently published. As an outcome of above study, peroxide cured EPDM insulation with 25 PHR of Silica, has been promulgated as potential low density insulation meeting all the requirements of Large Rocket Motor, while having a density as low as 0.997 g/cm<jats:sup>3</jats:sup> and <jats:italic>T</jats:italic><jats:sub>g</jats:sub> as low as −55°C. Effect of aging on mechanical, thermal properties and thermal degradation behavior of low density peroxide cured EPDM insulation has been studied and the findings have been corroborated by FTIR Spectroscopy and morphological Examination by SEM.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"10 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6585","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Novel methodology introduced to incorporate peroxide in the rubber matrix led to successful development of peroxide cured EPDM insulation based on precipitated silica, a conventional filler. Effect of Silica Filler on the physical, mechanical, thermal, ablative properties and thermal degradation of such an insulation has been recently published. As an outcome of above study, peroxide cured EPDM insulation with 25 PHR of Silica, has been promulgated as potential low density insulation meeting all the requirements of Large Rocket Motor, while having a density as low as 0.997 g/cm3 and Tg as low as −55°C. Effect of aging on mechanical, thermal properties and thermal degradation behavior of low density peroxide cured EPDM insulation has been studied and the findings have been corroborated by FTIR Spectroscopy and morphological Examination by SEM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大型火箭发动机的耐老化低密度过氧化物固化三元乙丙橡胶绝缘材料
在橡胶基质中加入过氧化物的新方法成功地开发出了基于沉淀白炭黑(一种传统填料)的过氧化物固化三元乙丙橡胶绝缘材料。最近发表了白炭黑填料对这种绝缘材料的物理、机械、热、烧蚀性能和热降解的影响。作为上述研究的成果,含 25 PHR 二氧化硅的过氧化物固化三元乙丙橡胶绝缘材料已被宣布为潜在的低密度绝缘材料,可满足大型火箭发动机的所有要求,其密度低至 0.997 g/cm3,Tg 低至 -55°C。研究了老化对低密度过氧化物固化三元乙丙橡胶绝缘材料的机械、热性能和热降解行为的影响,并通过傅立叶变换红外光谱和扫描电子显微镜进行了形态检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers for Advanced Technologies
Polymers for Advanced Technologies 工程技术-高分子科学
CiteScore
6.20
自引率
5.90%
发文量
337
审稿时长
2.1 months
期刊介绍: Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives. Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century. Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology. Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.
期刊最新文献
Age resistant low density peroxide cured EPDM rubber insulation for large rocket motors Preparation, mechanical analysis and investigation of swelling behavior of boron nitride reinforced hydrogel polymer composite films Multiobjective optimization of resin transfer molding curing process for silicon‐containing arylacetylene resin‐matrix composites Promotion on the thermal and mechanical behaviors of epoxy resin using phthalonitrile and functionalized‐SiO2 Sound absorption properties and mechanism of multi‐layer micro‐perforated nanofiber membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1