Genealogical processes of non-neutral population models under rapid mutation

Jere Koskela, Paul A. Jenkins, Adam M. Johansen, Dario Spano
{"title":"Genealogical processes of non-neutral population models under rapid mutation","authors":"Jere Koskela, Paul A. Jenkins, Adam M. Johansen, Dario Spano","doi":"arxiv-2406.16465","DOIUrl":null,"url":null,"abstract":"We show that genealogical trees arising from a broad class of non-neutral\nmodels of population evolution converge to the Kingman coalescent under a\nsuitable rescaling of time. As well as non-neutral biological evolution, our\nresults apply to genetic algorithms encompassing the prominent class of\nsequential Monte Carlo (SMC) methods. The time rescaling we need differs\nslightly from that used in classical results for convergence to the Kingman\ncoalescent, which has implications for the performance of different resampling\nschemes in SMC algorithms. In addition, our work substantially simplifies\nearlier proofs of convergence to the Kingman coalescent, and corrects an error\ncommon to several earlier results.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that genealogical trees arising from a broad class of non-neutral models of population evolution converge to the Kingman coalescent under a suitable rescaling of time. As well as non-neutral biological evolution, our results apply to genetic algorithms encompassing the prominent class of sequential Monte Carlo (SMC) methods. The time rescaling we need differs slightly from that used in classical results for convergence to the Kingman coalescent, which has implications for the performance of different resampling schemes in SMC algorithms. In addition, our work substantially simplifies earlier proofs of convergence to the Kingman coalescent, and corrects an error common to several earlier results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速突变下非中性种群模型的谱系过程
我们的研究表明,在适当的时间重定标条件下,由一大类非中性种群进化模型产生的系谱树会向金曼聚合收敛。除了非中性生物进化,我们的结果还适用于遗传算法,包括著名的连续蒙特卡罗(SMC)方法。我们所需的时间重定标与经典的金曼科尺度收敛结果所使用的时间重定标略有不同,这对 SMC 算法中不同重采样策略的性能有影响。此外,我们的工作还大大简化了早先关于收敛到 Kingmancoalescent 的证明,并纠正了早先几个结果中常见的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1