A Three-Blade-Paddlewheel Unit-Based Layered Metal–Organic Framework with Synergistic Intermolecular Interactions for Efficient Iodine Adsorption

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-06-20 DOI:10.1021/acs.cgd.4c00436
Ying-Xia Wang, Bao-Yue Niu, Fang Zheng, Shu-Wei Zhu, Lu-Qian Deng and Xian-Ming Zhang*, 
{"title":"A Three-Blade-Paddlewheel Unit-Based Layered Metal–Organic Framework with Synergistic Intermolecular Interactions for Efficient Iodine Adsorption","authors":"Ying-Xia Wang,&nbsp;Bao-Yue Niu,&nbsp;Fang Zheng,&nbsp;Shu-Wei Zhu,&nbsp;Lu-Qian Deng and Xian-Ming Zhang*,&nbsp;","doi":"10.1021/acs.cgd.4c00436","DOIUrl":null,"url":null,"abstract":"<p >The sustainable development of nuclear energy urgently requires the development of appropriate materials for the effective adsorption of radioiodine. Electron-donating group-functionalized layered metal–organic frameworks (MOFs) can not only enhance the host–guest interactions but also avoid the reduction of free pore voids benefit by the flexible interlayer spacing, supposed to have excellent I<sub>2</sub> adsorption ability. Herein, by rational selection of methyl-decorated aromatic 4,4′,4″-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoic acid (H<sub>3</sub>TMTB) and Zn(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O as the building units, a three-blade-paddlewheel unit-based layered [Zn<sub>2</sub>(TMTB)(H<sub>2</sub>O)<sub>2</sub>]·(OH<sup>–</sup>)·guest (<b>1</b>), possessing rare [Zn<sub>2</sub>(COO)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup> unit, was successfully synthesized and systematically characterized. I<sub>2</sub> adsorption study indicated that <b>1</b> is recyclable and the maximum adsorption in organic solution and vapor phase is 77.7 mg g<sup>–1</sup> and 2.00 g g<sup>–1</sup>, respectively. Grand Canonical Monte Carlo simulations revealed that the layered structure in synergy with the coexistence of −CH<sub>3</sub>, π-electron-rich phenyl, and [Zn<sub>2</sub>(COO)<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>+</sup> contribute to the excellent performance. This work may provide a new way for the development of advanced I<sub>2</sub> adsorption MOF-based materials.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c00436","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The sustainable development of nuclear energy urgently requires the development of appropriate materials for the effective adsorption of radioiodine. Electron-donating group-functionalized layered metal–organic frameworks (MOFs) can not only enhance the host–guest interactions but also avoid the reduction of free pore voids benefit by the flexible interlayer spacing, supposed to have excellent I2 adsorption ability. Herein, by rational selection of methyl-decorated aromatic 4,4′,4″-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoic acid (H3TMTB) and Zn(NO3)2·6H2O as the building units, a three-blade-paddlewheel unit-based layered [Zn2(TMTB)(H2O)2]·(OH)·guest (1), possessing rare [Zn2(COO)3(H2O)2]+ unit, was successfully synthesized and systematically characterized. I2 adsorption study indicated that 1 is recyclable and the maximum adsorption in organic solution and vapor phase is 77.7 mg g–1 and 2.00 g g–1, respectively. Grand Canonical Monte Carlo simulations revealed that the layered structure in synergy with the coexistence of −CH3, π-electron-rich phenyl, and [Zn2(COO)3(H2O)2]+ contribute to the excellent performance. This work may provide a new way for the development of advanced I2 adsorption MOF-based materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三叶片-桨轮单元的层状金属有机框架与高效碘吸附的协同分子间相互作用
核能的可持续发展迫切需要开发能有效吸附放射性碘的合适材料。电子捐赠基团官能化的层状金属有机框架(MOFs)既能增强主客体间的相互作用,又能通过灵活的层间距避免自由孔隙的减少,因而具有优异的碘吸附能力。在此,通过合理选择甲基装饰芳香族 4,4′,4″-(2,4,6-三甲基苯-1,3,5-三基)三苯甲酸(H3TMTB)和 Zn(NO3)2-6H2O 作为构建单元、成功合成了具有稀有[Zn2(COO)3(H2O)2]+单元的基于三叶桨轮单元的层状[Zn2(TMTB)(H2O)2]-(OH-)-guest (1),并对其进行了系统表征。I2 吸附研究表明,1 是可回收的,在有机溶液和气相中的最大吸附量分别为 77.7 mg g-1 和 2.00 g-1。大卡农蒙特卡洛模拟显示,层状结构与 -CH3、富含 π 电子的苯基和 [Zn2(COO)3(H2O)2]+ 的共存协同作用造就了卓越的性能。这项工作可能会为开发先进的 I2 吸附 MOF 基材料提供一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Structure and Morphology Controlled Growth of Bismuth Selenide Films with Tunable Transport Properties on H-Passivated Si(111) by Molecular Beam Epitaxy In the Footsteps of Pasteur: Finding Conglomerates by Using State-of-the-Art Electron Diffraction Issue Editorial Masthead Issue Publication Information Log-Normal Glide and the Formation of Misfit Dislocation Networks in Heteroepitaxial ZnS on GaP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1