{"title":"Ductile fracture of tubular specimens under non-proportional loading condition","authors":"Madhav Baral, Yannis P. Korkolis","doi":"10.1088/1757-899x/1307/1/012025","DOIUrl":null,"url":null,"abstract":"The ductile fracture behaviours of two tubular specimens, a AA6260-T4 macrotube (60 mm diameter and 2 mm thickness), and a SS-304L microtube (2.38 mm diameter and 0.15 mm thickness) under non-proportional loading condition are studied using a combined experimental-numerical approach. The experiments are conducted by loading the tubes under axial force and internal pressure along various non-proportional (i.e., corner) paths until failure by controlling the force/pressure ratio. The plastic behaviours of the tubes are characterized using the non-quadratic anisotropic yield criteria Yld2000-2D and Yld2004-3D. The material models are employed in the finite element (FE) simulation of the tube experiments using Abaqus/Standard (implicit). The FE models, which include thickness imperfection to capture the failure modes observed in the experiments, are then used to probe the fracture parameters inside the tube wall where fracture is likely to initiate. It is observed that the fracture strains from the non-proportional loading results are noticeably different when introduced to the proportional fracture strains, revealing the path-dependence fracture behaviour in tubular specimens.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1307/1/012025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ductile fracture behaviours of two tubular specimens, a AA6260-T4 macrotube (60 mm diameter and 2 mm thickness), and a SS-304L microtube (2.38 mm diameter and 0.15 mm thickness) under non-proportional loading condition are studied using a combined experimental-numerical approach. The experiments are conducted by loading the tubes under axial force and internal pressure along various non-proportional (i.e., corner) paths until failure by controlling the force/pressure ratio. The plastic behaviours of the tubes are characterized using the non-quadratic anisotropic yield criteria Yld2000-2D and Yld2004-3D. The material models are employed in the finite element (FE) simulation of the tube experiments using Abaqus/Standard (implicit). The FE models, which include thickness imperfection to capture the failure modes observed in the experiments, are then used to probe the fracture parameters inside the tube wall where fracture is likely to initiate. It is observed that the fracture strains from the non-proportional loading results are noticeably different when introduced to the proportional fracture strains, revealing the path-dependence fracture behaviour in tubular specimens.