Mitigating Dissolution to Enhance the Performance of Pillar[5]quinone in Sodium Batteries

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-07-02 DOI:10.1002/batt.202400312
Md Adil, Maximilian Schmidt, Julia Vogt, Thomas Diemant, Martin Oschatz, Birgit Esser
{"title":"Mitigating Dissolution to Enhance the Performance of Pillar[5]quinone in Sodium Batteries","authors":"Md Adil, Maximilian Schmidt, Julia Vogt, Thomas Diemant, Martin Oschatz, Birgit Esser","doi":"10.1002/batt.202400312","DOIUrl":null,"url":null,"abstract":"Sodium‐ion batteries using organic electrode materials are a promising alternative to state‐of‐the‐art lithium‐ion batteries. However, their practical viability is hindered by challenges such as a low specific capacity of the organic electrode materials, or their dissolution in the electrolyte. We herein present a double mitigation strategy to enhance the performance of pillar[5]quinone (P5Q) as positive electrode in sodium batteries. Using 5 M sodium bis(fluorosulfonyl)imide in succinonitrile as highly concentrated electrolyte, and encapsulating P5Q in CMK‐3 (Carbon Mesostructured by KAIST with hexagonally ordered rod‐like carbon domains) as templated ordered mesoporous carbon, we achieve a record cycling performance with improved cycling stability even at elevated temperature (40 °C). The P5Q@CMK‐3 composite electrode delivers 430 mAh g−1 specific discharge capacity at 0.2C rate with 90% retention over 200 cycles. This corresponds to an energy density of 831 Wh kg−1 (based on P5Q mass) and surpasses previous reports on pillarquinones. When operated at 40 °C, the P5Q@CMK‐3 composite electrodes deliver a specific discharge capacity of 438 mAh g−1 with 88% capacity retention over 500 cycles (0.02% per cycle). This study underscores the crucial role the electrolyte plays in advancing organic sodium batteries, offering a promising avenue for the future of sustainable energy technologies.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"13 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400312","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium‐ion batteries using organic electrode materials are a promising alternative to state‐of‐the‐art lithium‐ion batteries. However, their practical viability is hindered by challenges such as a low specific capacity of the organic electrode materials, or their dissolution in the electrolyte. We herein present a double mitigation strategy to enhance the performance of pillar[5]quinone (P5Q) as positive electrode in sodium batteries. Using 5 M sodium bis(fluorosulfonyl)imide in succinonitrile as highly concentrated electrolyte, and encapsulating P5Q in CMK‐3 (Carbon Mesostructured by KAIST with hexagonally ordered rod‐like carbon domains) as templated ordered mesoporous carbon, we achieve a record cycling performance with improved cycling stability even at elevated temperature (40 °C). The P5Q@CMK‐3 composite electrode delivers 430 mAh g−1 specific discharge capacity at 0.2C rate with 90% retention over 200 cycles. This corresponds to an energy density of 831 Wh kg−1 (based on P5Q mass) and surpasses previous reports on pillarquinones. When operated at 40 °C, the P5Q@CMK‐3 composite electrodes deliver a specific discharge capacity of 438 mAh g−1 with 88% capacity retention over 500 cycles (0.02% per cycle). This study underscores the crucial role the electrolyte plays in advancing organic sodium batteries, offering a promising avenue for the future of sustainable energy technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减轻溶解以提高钠电池中柱状[5]醌的性能
使用有机电极材料的钠离子电池有望替代最先进的锂离子电池。然而,有机电极材料的低比容量或在电解液中的溶解等难题阻碍了其实际可行性。我们在此提出一种双重缓解策略,以提高钠电池中作为正极的柱[5]醌(P5Q)的性能。我们使用琥珀腈中的 5 M 双(氟磺酰)亚胺钠作为高浓度电解液,并将 P5Q 包封在 CMK-3(由 KAIST 提供的具有六角有序棒状碳域的介质结构碳)作为模板有序介孔碳中,从而实现了创纪录的循环性能,即使在高温(40 °C)下也能提高循环稳定性。P5Q@CMK-3 复合电极在 0.2C 速率下的比放电容量为 430 mAh g-1,在 200 次循环中的保持率为 90%。这相当于 831 Wh kg-1 的能量密度(基于 P5Q 质量),超过了之前有关柱醌的报道。在 40 °C 下工作时,P5Q@CMK-3 复合电极的比放电容量为 438 mAh g-1,在 500 次循环中容量保持率为 88%(每次循环 0.02%)。这项研究强调了电解质在推动有机钠电池发展中的关键作用,为未来的可持续能源技术提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Feature: Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries (Batteries & Supercaps 11/2024) Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024) Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024) Cover Picture: Ethanol-Based Solution Synthesis of a Functionalized Sulfide Solid Electrolyte: Investigation and Application (Batteries & Supercaps 10/2024) Cover Feature: Can Prussian Blue Analogues be Holy Grail for Advancing Post-Lithium Batteries? (Batteries & Supercaps 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1