Sarabpreet Singh, Mahdi Ghafariasl, Hsin-Yu Ko, Sampath Gamage, Robert A. DiStasio Jr., Michael Snure, Yohannes Abate
{"title":"Substrate Induced van der Waals Force Effects on the Stability of Violet Phosphorus","authors":"Sarabpreet Singh, Mahdi Ghafariasl, Hsin-Yu Ko, Sampath Gamage, Robert A. DiStasio Jr., Michael Snure, Yohannes Abate","doi":"10.1002/admi.202400326","DOIUrl":null,"url":null,"abstract":"<p>Since the first isolation of graphene, the importance of van der Waals (vdW) interactions has become increasingly recognized in the burgeoning field of layered materials. In this work, infrared nanoimaging techniques and theoretical modeling are used to unravel the critical role played by interfacial vdW interactions in governing the stability of violet phosphorus (VP)—a recently rediscovered wide bandgap p-type semiconductor—when exfoliated on different substrates. It is demonstrated that vdW interactions with the underlying substrate can have a profound influence on the stability of exfoliated VP flakes and investigate how these interactions are affected by flake thickness, substrate properties (e.g., substrate hydrophilicity, surface roughness), and the exfoliation process. These findings highlight the key role played by interfacial vdW interactions in governing the stability and physical properties of layered materials, and can be used to guide substrate selection in the preparation and study of this important class of materials.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 29","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400326","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400326","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the first isolation of graphene, the importance of van der Waals (vdW) interactions has become increasingly recognized in the burgeoning field of layered materials. In this work, infrared nanoimaging techniques and theoretical modeling are used to unravel the critical role played by interfacial vdW interactions in governing the stability of violet phosphorus (VP)—a recently rediscovered wide bandgap p-type semiconductor—when exfoliated on different substrates. It is demonstrated that vdW interactions with the underlying substrate can have a profound influence on the stability of exfoliated VP flakes and investigate how these interactions are affected by flake thickness, substrate properties (e.g., substrate hydrophilicity, surface roughness), and the exfoliation process. These findings highlight the key role played by interfacial vdW interactions in governing the stability and physical properties of layered materials, and can be used to guide substrate selection in the preparation and study of this important class of materials.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.