Sequential framework for analyzing mobile click-through decision in online travel agency with user digital footprints

IF 6.3 3区 管理学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM Information Technology & Tourism Pub Date : 2024-06-26 DOI:10.1007/s40558-024-00294-z
Hongming Gao, Di Deng, Hongwei Liu, Zhouyang Liang
{"title":"Sequential framework for analyzing mobile click-through decision in online travel agency with user digital footprints","authors":"Hongming Gao, Di Deng, Hongwei Liu, Zhouyang Liang","doi":"10.1007/s40558-024-00294-z","DOIUrl":null,"url":null,"abstract":"<p>In the hotel booking market, high click-through rates are essential for online travel agencies (OTAs) to earn commissions. Given the dominance of mobile devices in web traffic, analyzing the mobile click-through decision-making process plays a vital role in search engine optimization. This study proposes a sequential framework that leverages Bayesian inference to model individual users’ click-through behaviors using user digital footprints, which encompass sequences of search, browse, compare, and click-through actions. This framework extracts three categories of information based on the degrees of dynamism in the hotel search process, ranging from less dynamic to highly dynamic levels: static hotel attributes, information cues in the search results, and temporal characteristics of user behaviors. Extensive experiments on a global OTA mobile clickstream dataset with over 600,000 observations reveal the substantial superiority of the proposed framework over the baseline models like probit regression and Naive Bayes. Notably, temporal characteristics emerge as the most important category. Drawing on our model, we delve into the interpretability of these three information categories. Additionally, we compare their varying impacts across different devices. Beyond these findings, this study offers valuable managerial implications for mobile OTA search engine marketing and optimization.</p>","PeriodicalId":46275,"journal":{"name":"Information Technology & Tourism","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology & Tourism","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s40558-024-00294-z","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

Abstract

In the hotel booking market, high click-through rates are essential for online travel agencies (OTAs) to earn commissions. Given the dominance of mobile devices in web traffic, analyzing the mobile click-through decision-making process plays a vital role in search engine optimization. This study proposes a sequential framework that leverages Bayesian inference to model individual users’ click-through behaviors using user digital footprints, which encompass sequences of search, browse, compare, and click-through actions. This framework extracts three categories of information based on the degrees of dynamism in the hotel search process, ranging from less dynamic to highly dynamic levels: static hotel attributes, information cues in the search results, and temporal characteristics of user behaviors. Extensive experiments on a global OTA mobile clickstream dataset with over 600,000 observations reveal the substantial superiority of the proposed framework over the baseline models like probit regression and Naive Bayes. Notably, temporal characteristics emerge as the most important category. Drawing on our model, we delve into the interpretability of these three information categories. Additionally, we compare their varying impacts across different devices. Beyond these findings, this study offers valuable managerial implications for mobile OTA search engine marketing and optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用用户数字足迹分析在线旅行社移动点击决策的顺序框架
在酒店预订市场,高点击率是在线旅行社(OTA)赚取佣金的关键。鉴于移动设备在网络流量中的主导地位,分析移动点击决策过程在搜索引擎优化中起着至关重要的作用。本研究提出了一个顺序框架,利用贝叶斯推理方法,使用用户数字足迹(包括搜索、浏览、比较和点击操作的顺序)对单个用户的点击行为进行建模。该框架根据酒店搜索过程的动态程度(从低动态到高动态)提取三类信息:静态酒店属性、搜索结果中的信息提示和用户行为的时间特征。在全球 OTA 移动点击流数据集上进行的大量实验显示,与 probit 回归和 Naive Bayes 等基线模型相比,所提出的框架具有很大的优越性。值得注意的是,时间特征成为最重要的类别。根据我们的模型,我们深入研究了这三类信息的可解释性。此外,我们还比较了它们在不同设备上的不同影响。除了这些发现,本研究还为移动 OTA 搜索引擎营销和优化提供了宝贵的管理启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Technology & Tourism
Information Technology & Tourism HOSPITALITY, LEISURE, SPORT & TOURISM-
CiteScore
18.10
自引率
5.40%
发文量
22
期刊介绍: Information Technology & Tourism stands as the pioneer interdisciplinary journal dedicated to exploring the essence and impact of digital technology in tourism, travel, and hospitality. It delves into challenges emerging at the crossroads of IT and the domains of tourism, travel, and hospitality, embracing perspectives from both technical and social sciences. The journal covers a broad spectrum of topics, including but not limited to the development, adoption, use, management, and governance of digital technology. It supports both theory-focused research and studies with direct relevance to the industry.
期刊最新文献
Beyond words: unveiling the implications of blank reviews in online rating systems Travelers’ viewpoints on machine translation using Q methodology: a perspective of consumption value theory Solving the tourist trip planning problem with attraction patterns using meta-heuristic techniques Automated photo filtering for tourism domain using deep and active learning: the case of Israeli and worldwide cities on instagram Sequential framework for analyzing mobile click-through decision in online travel agency with user digital footprints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1