{"title":"Metal–semiconductor transition in bilayer graphene by bowl inversion of monofluorosumanene","authors":"Mina Maruyama, Yanlin Gao and Susumu Okada","doi":"10.35848/1347-4065/ad52dc","DOIUrl":null,"url":null,"abstract":"The bowl-shaped hydrocarbon molecule, monofluorosumanene (C21H11F), can act as a molecular switch to control the carrier density of bilayer graphene by flipping its conformation. Our calculations indicate that monofluorosumanene, in which F atom is located outside the curved C–C network (exo-F molecular conformation), induces electron and hole co-doping of 1.5 × 1013 cm−2 in monofluorosumanene-intercalated bilayer graphene because of a large dipole moment normal to the molecular plane of the monofluorosumanene. The intercalated monofluorosumanene does not affect the electronic structure of bilayer graphene when the F atom is located inside the curved C–C network (endo-F conformation) owing to a small out-of-plane dipole moment. The application of an external electric field across the graphene layers promotes bowl inversion between endo-F and exo-F molecular conformations because of the low activation barrier (approximately 800 meV) between these two conformations and the dipole moment normal to the molecular plane of the exo-F conformation.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad52dc","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The bowl-shaped hydrocarbon molecule, monofluorosumanene (C21H11F), can act as a molecular switch to control the carrier density of bilayer graphene by flipping its conformation. Our calculations indicate that monofluorosumanene, in which F atom is located outside the curved C–C network (exo-F molecular conformation), induces electron and hole co-doping of 1.5 × 1013 cm−2 in monofluorosumanene-intercalated bilayer graphene because of a large dipole moment normal to the molecular plane of the monofluorosumanene. The intercalated monofluorosumanene does not affect the electronic structure of bilayer graphene when the F atom is located inside the curved C–C network (endo-F conformation) owing to a small out-of-plane dipole moment. The application of an external electric field across the graphene layers promotes bowl inversion between endo-F and exo-F molecular conformations because of the low activation barrier (approximately 800 meV) between these two conformations and the dipole moment normal to the molecular plane of the exo-F conformation.
期刊介绍:
The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields:
• Semiconductors, dielectrics, and organic materials
• Photonics, quantum electronics, optics, and spectroscopy
• Spintronics, superconductivity, and strongly correlated materials
• Device physics including quantum information processing
• Physics-based circuits and systems
• Nanoscale science and technology
• Crystal growth, surfaces, interfaces, thin films, and bulk materials
• Plasmas, applied atomic and molecular physics, and applied nuclear physics
• Device processing, fabrication and measurement technologies, and instrumentation
• Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS