Hojjat Badnava, Chun Hean Lee, Sayed Hassan Nourbakhsh, Paulo Roberto Refachinho de Campos
{"title":"A stabilised Total Lagrangian Element-Free Galerkin method for transient nonlinear solid dynamics","authors":"Hojjat Badnava, Chun Hean Lee, Sayed Hassan Nourbakhsh, Paulo Roberto Refachinho de Campos","doi":"10.1007/s00466-024-02507-y","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a new stabilised Element-Free Galerkin (EFG) method tailored for large strain transient solid dynamics. The method employs a mixed formulation that combines the Total Lagrangian conservation laws for linear momentum with an additional set of geometric strain measures. The main aim of this paper is to adapt the well-established Streamline Upwind Petrov–Galerkin (SUPG) stabilisation methodology to the context of EFG, presenting three key contributions. Firstly, a variational consistent EFG computational framework is introduced, emphasising behaviours associated with nearly incompressible materials. Secondly, the suppression of non-physical numerical artefacts, such as zero-energy modes and locking, through a well-established stabilisation procedure. Thirdly, the stability of the SUPG formulation is demonstrated using the time rate of <i>Hamiltonian</i> of the system, ensuring non-negative entropy production throughout the entire simulation. To assess the stability, robustness and performance of the proposed algorithm, several benchmark examples in the context of isothermal hyperelasticity and large strain plasticity are examined. Results show that the proposed algorithm effectively addresses spurious modes, including hour-glassing and spurious pressure fluctuations commonly observed in classical displacement-based EFG frameworks.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"12 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02507-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a new stabilised Element-Free Galerkin (EFG) method tailored for large strain transient solid dynamics. The method employs a mixed formulation that combines the Total Lagrangian conservation laws for linear momentum with an additional set of geometric strain measures. The main aim of this paper is to adapt the well-established Streamline Upwind Petrov–Galerkin (SUPG) stabilisation methodology to the context of EFG, presenting three key contributions. Firstly, a variational consistent EFG computational framework is introduced, emphasising behaviours associated with nearly incompressible materials. Secondly, the suppression of non-physical numerical artefacts, such as zero-energy modes and locking, through a well-established stabilisation procedure. Thirdly, the stability of the SUPG formulation is demonstrated using the time rate of Hamiltonian of the system, ensuring non-negative entropy production throughout the entire simulation. To assess the stability, robustness and performance of the proposed algorithm, several benchmark examples in the context of isothermal hyperelasticity and large strain plasticity are examined. Results show that the proposed algorithm effectively addresses spurious modes, including hour-glassing and spurious pressure fluctuations commonly observed in classical displacement-based EFG frameworks.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.