Multi-level Phenotypic Models of Cardiovascular Disease and Obstructive Sleep Apnea Comorbidities: A Longitudinal Wisconsin Sleep Cohort Study

Duy Nguyen, Ca Hoang, Phat K. Huynh, Tien Truong, Dang Nguyen, Abhay Sharma, Trung Q. Le
{"title":"Multi-level Phenotypic Models of Cardiovascular Disease and Obstructive Sleep Apnea Comorbidities: A Longitudinal Wisconsin Sleep Cohort Study","authors":"Duy Nguyen, Ca Hoang, Phat K. Huynh, Tien Truong, Dang Nguyen, Abhay Sharma, Trung Q. Le","doi":"arxiv-2406.18602","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases (CVDs) are notably prevalent among patients with\nobstructive sleep apnea (OSA), posing unique challenges in predicting CVD\nprogression due to the intricate interactions of comorbidities. Traditional\nmodels typically lack the necessary dynamic and longitudinal scope to\naccurately forecast CVD trajectories in OSA patients. This study introduces a\nnovel multi-level phenotypic model to analyze the progression and interplay of\nthese conditions over time, utilizing data from the Wisconsin Sleep Cohort,\nwhich includes 1,123 participants followed for decades. Our methodology\ncomprises three advanced steps: (1) Conducting feature importance analysis\nthrough tree-based models to underscore critical predictive variables like\ntotal cholesterol, low-density lipoprotein (LDL), and diabetes. (2) Developing\na logistic mixed-effects model (LGMM) to track longitudinal transitions and\npinpoint significant factors, which displayed a diagnostic accuracy of 0.9556.\n(3) Implementing t-distributed Stochastic Neighbor Embedding (t-SNE) alongside\nGaussian Mixture Models (GMM) to segment patient data into distinct phenotypic\nclusters that reflect varied risk profiles and disease progression pathways.\nThis phenotypic clustering revealed two main groups, with one showing a\nmarkedly increased risk of major adverse cardiovascular events (MACEs),\nunderscored by the significant predictive role of nocturnal hypoxia and\nsympathetic nervous system activity from sleep data. Analysis of transitions\nand trajectories with t-SNE and GMM highlighted different progression rates\nwithin the cohort, with one cluster progressing more slowly towards severe CVD\nstates than the other. This study offers a comprehensive understanding of the\ndynamic relationship between CVD and OSA, providing valuable tools for\npredicting disease onset and tailoring treatment approaches.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) are notably prevalent among patients with obstructive sleep apnea (OSA), posing unique challenges in predicting CVD progression due to the intricate interactions of comorbidities. Traditional models typically lack the necessary dynamic and longitudinal scope to accurately forecast CVD trajectories in OSA patients. This study introduces a novel multi-level phenotypic model to analyze the progression and interplay of these conditions over time, utilizing data from the Wisconsin Sleep Cohort, which includes 1,123 participants followed for decades. Our methodology comprises three advanced steps: (1) Conducting feature importance analysis through tree-based models to underscore critical predictive variables like total cholesterol, low-density lipoprotein (LDL), and diabetes. (2) Developing a logistic mixed-effects model (LGMM) to track longitudinal transitions and pinpoint significant factors, which displayed a diagnostic accuracy of 0.9556. (3) Implementing t-distributed Stochastic Neighbor Embedding (t-SNE) alongside Gaussian Mixture Models (GMM) to segment patient data into distinct phenotypic clusters that reflect varied risk profiles and disease progression pathways. This phenotypic clustering revealed two main groups, with one showing a markedly increased risk of major adverse cardiovascular events (MACEs), underscored by the significant predictive role of nocturnal hypoxia and sympathetic nervous system activity from sleep data. Analysis of transitions and trajectories with t-SNE and GMM highlighted different progression rates within the cohort, with one cluster progressing more slowly towards severe CVD states than the other. This study offers a comprehensive understanding of the dynamic relationship between CVD and OSA, providing valuable tools for predicting disease onset and tailoring treatment approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心血管疾病和阻塞性睡眠呼吸暂停合并症的多层次表型模型:威斯康星睡眠队列纵向研究
心血管疾病(CVDs)在患有结构性睡眠呼吸暂停(OSA)的患者中非常普遍,由于合并症之间错综复杂的相互作用,给预测心血管疾病的进展带来了独特的挑战。传统模型通常缺乏必要的动态和纵向范围,无法准确预测 OSA 患者的心血管疾病发展轨迹。本研究利用威斯康星睡眠队列(Wisconsin Sleep Cohort)的数据,引入了一种新的多层次表型模型来分析这些疾病随时间的发展和相互作用。我们的方法包括三个先进步骤:(1)通过树状模型进行特征重要性分析,以强调关键的预测变量,如总胆固醇、低密度脂蛋白(LDL)和糖尿病。(2)开发逻辑混合效应模型(LGMM)来追踪纵向转变并指出重要因素,诊断准确率为 0.9556。3)实施 t 分布随机邻域嵌入(t-SNE)和高斯混合模型(GMM),将患者数据分割成不同的表型聚类,以反映不同的风险特征和疾病进展途径。这种表型聚类揭示了两个主要群体,其中一个群体发生主要不良心血管事件(MACE)的风险明显增加,而睡眠数据中的夜间缺氧和交感神经系统活动的重要预测作用则凸显了这一点。利用 t-SNE 和 GMM 对过渡和轨迹进行的分析突显了队列中不同的进展速度,其中一个群组比另一个群组在严重心血管疾病状态的进展速度更慢。这项研究全面揭示了心血管疾病与 OSA 之间的动态关系,为预测疾病的发生和定制治疗方法提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1