Suction Feeding Turned on Its Head: A Functional Novelty Facilitates Lower Jaw Protrusion.

IF 2.2 3区 生物学 Q1 ZOOLOGY Integrative and Comparative Biology Pub Date : 2024-09-27 DOI:10.1093/icb/icae097
Christopher M Martinez, Rizelle Mae M Mazon, Melanie L J Stiassny
{"title":"Suction Feeding Turned on Its Head: A Functional Novelty Facilitates Lower Jaw Protrusion.","authors":"Christopher M Martinez, Rizelle Mae M Mazon, Melanie L J Stiassny","doi":"10.1093/icb/icae097","DOIUrl":null,"url":null,"abstract":"<p><p>Functional novelties play important roles in creating new ways for organisms to access resources. In fishes, jaw protrusion has been attributed to the massive diversity of suction-based feeding systems, facilitating the dominant mode of prey capture in this group. Nearly all fishes that feed by suction use upper jaw protrusion, achieved by rotation of the mandible at its base, which then transmits forward motion to independently mobile upper jaw bones. In this study, by contrast, we explore an unusual form of lower jaw protrusion in the freshwater invertivore, Nannocharax fasciatus, enabled by a novel intramandibular joint (IMJ). We combine morphological, kinematic, and biomechanical data to show that the added mobility created by the IMJ influences the pattern of suction-based prey capture movements and contributes to lower jaw protrusion (increasing it by 25%, based on biomechanical modeling). Interestingly, the upper jaw bones are fused in N. fasciatus and rotate about a single fixed joint, like the lower jaws of most other suction feeding fishes. We suggest that this vertical inversion of the jaw protrusion mechanism for ventrally directed suction-feeding on benthic prey is a likely exaptation, as the IMJ is used for biting in related taxa. This work highlights the ability of novelties to facilitate ecological specialization by enabling new functional capabilities.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Functional novelties play important roles in creating new ways for organisms to access resources. In fishes, jaw protrusion has been attributed to the massive diversity of suction-based feeding systems, facilitating the dominant mode of prey capture in this group. Nearly all fishes that feed by suction use upper jaw protrusion, achieved by rotation of the mandible at its base, which then transmits forward motion to independently mobile upper jaw bones. In this study, by contrast, we explore an unusual form of lower jaw protrusion in the freshwater invertivore, Nannocharax fasciatus, enabled by a novel intramandibular joint (IMJ). We combine morphological, kinematic, and biomechanical data to show that the added mobility created by the IMJ influences the pattern of suction-based prey capture movements and contributes to lower jaw protrusion (increasing it by 25%, based on biomechanical modeling). Interestingly, the upper jaw bones are fused in N. fasciatus and rotate about a single fixed joint, like the lower jaws of most other suction feeding fishes. We suggest that this vertical inversion of the jaw protrusion mechanism for ventrally directed suction-feeding on benthic prey is a likely exaptation, as the IMJ is used for biting in related taxa. This work highlights the ability of novelties to facilitate ecological specialization by enabling new functional capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抽吸式喂食:功能新颖,促进下颌前突。
功能创新在创造生物获取资源的新途径方面发挥着重要作用。在鱼类中,颌突起是以吸力为基础的摄食系统具有巨大多样性的原因,它促进了这一鱼类捕获猎物的主要模式。几乎所有利用吸力捕食的鱼类都使用上颌前突,通过旋转下颌骨基部来实现,然后将向前运动传递给独立活动的上颌骨。与此相反,在本研究中,我们探讨了淡水无脊椎鱼类 Nannocharax fasciatus 的一种不同寻常的下颌前突形式,这种下颌前突是通过一个新颖的颌内关节(IMJ)实现的。我们结合形态学、运动学和生物力学数据表明,颌内关节增加的活动度影响了基于吸力的猎物捕获运动模式,并促进了下颌前突(根据生物力学建模,下颌前突增加了25%)。有趣的是,法氏鲈的上颚骨是融合在一起的,并围绕一个单一的固定关节旋转,就像大多数其他吸食鱼类的下颚一样。我们认为,这种垂直反转的下颌突起机制用于腹向吸食底栖猎物很可能是一种适应性改变,因为在相关类群中,IMJ用于咬食。这项工作凸显了新物种通过实现新的功能能力来促进生态特化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
期刊最新文献
Big fish can't jump? Allometry of terrestrial jumping in cyprinodontiform fishes. Combining Morphological Characteristics and DNA Barcoding Techniques Confirm Sea Urchins of the Genus Echinometra (Echinodermata: Echinoidea) in Marine Habitat Located at Extreme Regions of the Caribbean Sea. Marine Debris Harbor Unique, yet Functionally Similar Cryptofauna Communities. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Hurricane Irma Linked to Coral Skeletal Density Shifts on the Florida Keys Reef Tract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1