{"title":"Determination of prebiotic properties of rice bran extract.","authors":"Thornthan Sawangwan, Daleena Kajadman, Ratchanon Kulchananimit","doi":"10.12938/bmfh.2023-090","DOIUrl":null,"url":null,"abstract":"<p><p>This research investigated and compared the prebiotic properties of a rice bran extract obtained through commercial xylanase extraction in comparison with water extraction. Prebiotic properties were evaluated by probiotic growth stimulation (<i>Lacticaseibacillus casei</i> and <i>Lactiplantibacillus plantarum</i>) and gastrointestinal pathogen inhibition (<i>Bacillus cereus</i> and <i>Escherichia coli</i>). The rice bran extract obtained with xylanase (RB1) displayed significantly higher total polysaccharide and total reducing sugar contents than those obtained with water (RB2; p<0.05). After extraction for 30 min, RB1 exhibited the highest total polysaccharide and total reducing sugar contents. HPLC (high performance liquid chromatography) analysis revealed that RB1 primarily contained xylose, while RB2 contained less glucose and lacked other sugar derivatives. RB1 proved effective in stimulating the growth of <i>L. casei</i> and <i>L. plantarum</i>, surpassing even inulin (a commercial prebiotic). Furthermore, it demonstrated a high potential for inhibiting the growth of pathogenic <i>B. cereus</i> and <i>E. coli,</i> comparable to inulin. In contrast, RB2 exhibited lower inhibitory capacity against <i>B. cereus</i> and <i>E. coli</i>.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"222-226"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of microbiota, food and health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12938/bmfh.2023-090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigated and compared the prebiotic properties of a rice bran extract obtained through commercial xylanase extraction in comparison with water extraction. Prebiotic properties were evaluated by probiotic growth stimulation (Lacticaseibacillus casei and Lactiplantibacillus plantarum) and gastrointestinal pathogen inhibition (Bacillus cereus and Escherichia coli). The rice bran extract obtained with xylanase (RB1) displayed significantly higher total polysaccharide and total reducing sugar contents than those obtained with water (RB2; p<0.05). After extraction for 30 min, RB1 exhibited the highest total polysaccharide and total reducing sugar contents. HPLC (high performance liquid chromatography) analysis revealed that RB1 primarily contained xylose, while RB2 contained less glucose and lacked other sugar derivatives. RB1 proved effective in stimulating the growth of L. casei and L. plantarum, surpassing even inulin (a commercial prebiotic). Furthermore, it demonstrated a high potential for inhibiting the growth of pathogenic B. cereus and E. coli, comparable to inulin. In contrast, RB2 exhibited lower inhibitory capacity against B. cereus and E. coli.
本研究对通过商业木聚糖酶提取和水提取获得的米糠提取物的益生特性进行了调查和比较。益生元特性通过刺激益生菌生长(干酪乳酸杆菌和植物乳杆菌)和抑制胃肠道病原体(蜡样芽孢杆菌和大肠杆菌)进行评估。使用木聚糖酶(RB1)获得的米糠提取物的总多糖和总还原糖含量明显高于使用水(RB2;pL. casei 和 L. plantarum)获得的提取物,甚至超过了菊粉(一种商业益生元)。此外,它在抑制致病性蜡样芽孢杆菌和大肠杆菌生长方面的潜力也很高,与菊粉不相上下。相比之下,RB2 对蜡样芽孢杆菌和大肠杆菌的抑制能力较低。