Stephanie Shahrzad, Emma K. Bramham, Sandra Piazolo, Mark Thomas, Paul K. Byrne
{"title":"Amazonian Tectonic Evolution of Ceraunius and Tractus Fossae, Mars, and Implications for Local Magmatic Sources","authors":"Stephanie Shahrzad, Emma K. Bramham, Sandra Piazolo, Mark Thomas, Paul K. Byrne","doi":"10.1029/2023JE008123","DOIUrl":null,"url":null,"abstract":"<p>The heavily faulted Martian terrains of Ceraunius Fossae and Tractus Fossae, south of the Alba Mons volcano, have previously only been considered as parts of larger tectonic studies of Alba Mons, and consequently the complexity of the faulting remains unclear. As these terrains are in the midst of the large Tharsis volcanoes, the study of their surface deformation has the potential to help unravel the volcano-tectonic deformation associated with the growth of Tharsis as well as to decipher details of the magma-tectonic processes responsible for graben formation. Here, we distinguish between faults and collapse structures based on image and topographic evidence. We mapped ∼12,000 faults, which we grouped into three distinct fault groups based on orientation, morphology, and relative ages. These show a temporal evolution in the mapped fault orientations from NE to N-S to NW with associated changes in stress orientations. We also mapped collapse features and categorized them into four different groups: pit-crater chains, catenae, u-shaped troughs and chasmata. Examining the four collapse structure groups reveals that they are likely four progressive stages in the erosional evolution of pit-crater chains. Together, this revealed a structural history heavily influenced by lateral diking from both local (radial to Alba Mons, Pavonis Mons and Ascraeus Mons) and regional (radial to Tharsis) sources, and vertical diking from a proposed Ceraunius Fossae centered magma source. This, along with an updated crater size-frequency distribution analysis of the unit ages, reveals a highly active tectonic and magmatic environment south of Alba Mons in the Middle Amazonian.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008123","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The heavily faulted Martian terrains of Ceraunius Fossae and Tractus Fossae, south of the Alba Mons volcano, have previously only been considered as parts of larger tectonic studies of Alba Mons, and consequently the complexity of the faulting remains unclear. As these terrains are in the midst of the large Tharsis volcanoes, the study of their surface deformation has the potential to help unravel the volcano-tectonic deformation associated with the growth of Tharsis as well as to decipher details of the magma-tectonic processes responsible for graben formation. Here, we distinguish between faults and collapse structures based on image and topographic evidence. We mapped ∼12,000 faults, which we grouped into three distinct fault groups based on orientation, morphology, and relative ages. These show a temporal evolution in the mapped fault orientations from NE to N-S to NW with associated changes in stress orientations. We also mapped collapse features and categorized them into four different groups: pit-crater chains, catenae, u-shaped troughs and chasmata. Examining the four collapse structure groups reveals that they are likely four progressive stages in the erosional evolution of pit-crater chains. Together, this revealed a structural history heavily influenced by lateral diking from both local (radial to Alba Mons, Pavonis Mons and Ascraeus Mons) and regional (radial to Tharsis) sources, and vertical diking from a proposed Ceraunius Fossae centered magma source. This, along with an updated crater size-frequency distribution analysis of the unit ages, reveals a highly active tectonic and magmatic environment south of Alba Mons in the Middle Amazonian.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.