A Rouillard, P Escot Bocanegra, A Stancampiano, S Dozias, J Lemaire, J M Pouvesle, E Robert, F Brulé-Morabito, M Demasure, S Rouquette
{"title":"Demonstration for cold atmospheric pressure plasma jet operation and antibacterial action in microgravity.","authors":"A Rouillard, P Escot Bocanegra, A Stancampiano, S Dozias, J Lemaire, J M Pouvesle, E Robert, F Brulé-Morabito, M Demasure, S Rouquette","doi":"10.1038/s41526-024-00408-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cold atmospheric pressure plasma (ionized gas) is an innovative medical tool for the treatment of infected wounds thanks to its potential to inactivate drug-resistant microorganisms and promote tissue regeneration and vascularization. The low power consumption, compactness, and versatility of Cold Atmospheric Pressure Plasma (CAPP) devices make them an ideal tool for risk mitigation associated with human spaceflights. This work presents results in microgravity on the operability of CAPP and its antimicrobial effect. The experiments carried out in parabolic flights make it possible to optimize the treatment conditions (i.e., the distance, the gas mixture) and to obtain the rapid inactivation (<15 s) of Escherichia coli samples. Interestingly, the inactivation efficiency of CAPP was higher during parabolic flights than under terrestrial conditions. Overall, these results encourage the further development of CAPP medical devices for its implementation during human spaceflights.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"74"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226633/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00408-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cold atmospheric pressure plasma (ionized gas) is an innovative medical tool for the treatment of infected wounds thanks to its potential to inactivate drug-resistant microorganisms and promote tissue regeneration and vascularization. The low power consumption, compactness, and versatility of Cold Atmospheric Pressure Plasma (CAPP) devices make them an ideal tool for risk mitigation associated with human spaceflights. This work presents results in microgravity on the operability of CAPP and its antimicrobial effect. The experiments carried out in parabolic flights make it possible to optimize the treatment conditions (i.e., the distance, the gas mixture) and to obtain the rapid inactivation (<15 s) of Escherichia coli samples. Interestingly, the inactivation efficiency of CAPP was higher during parabolic flights than under terrestrial conditions. Overall, these results encourage the further development of CAPP medical devices for its implementation during human spaceflights.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.