Inflammation as a pathway for heavy metal-induced liver damage—Insights from a repeated-measures study in residents exposed to metals and bioinformatics analysis
{"title":"Inflammation as a pathway for heavy metal-induced liver damage—Insights from a repeated-measures study in residents exposed to metals and bioinformatics analysis","authors":"Shuanzheng Zhao , Guohuan Yin , Meiduo Zhao , Jingtao Wu , Xiaolin Liu , Lanping Wei , Qun Xu , Jing Xu","doi":"10.1016/j.ijheh.2024.114417","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Epidemiological studies on heavy metal exposure and liver injury are predominantly cross-sectional, lacking longitudinal data and exploration of potential mechanisms.</p></div><div><h3>Method</h3><p>We conducted a repeated-measures study in Northeast China from 2016 to 2019, involving 322 participants. Linear mixed models (LMM) and Bayesian kernel machine regression (BKMR) were employed to explore the associations between individual and mixed blood metal concentrations [chromium (Cr), cadmium (Cd), vanadium (V), manganese (Mn), lead (Pb)] and liver function biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), globulin (GLB), total protein (TP)]. Mediation and enrichment analyses were used to determine whether the inflammatory response is a critical pathway for heavy metal-induced liver damage.</p></div><div><h3>Result</h3><p>We obtained a total of 958 observations. The results from LMM and BKMR indicated significant associations between individual and mixed heavy metals and liver function biomarkers. Longitudinal analysis revealed associations between Cd and the annual increase rate of ALT (<em>β</em> = 2.61; 95% CI: 0.97, 4.26), the annual decrease rate of ALB (<em>β</em> = −0.21; 95% CI: −0.39, −0.03), Mn and the annual increase rate of GLB (<em>β</em> = 0.38; 95% CI: 0.05, 0.72), and V and the annual decrease rate of ALB/GLB (<em>β</em> = −1.15; 95% CI: −2.00, −0.31). Mediation analysis showed that high-sensitivity C-reactive protein (hsCRP) mediated the associations between Cd and AST, TP, with mediation effects of 27.7% and 13.4%, respectively. Additionally, results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses supported the role of inflammatory response pathways.</p></div><div><h3>Conclusion</h3><p>Our findings indicate that heavy metal exposure leads to liver damage, with the inflammatory response potentially serving as a crucial pathway in this process. This study offers a novel perspective on understanding heavy metal-induced liver injury and provides insights for preventive measures against the health damage caused by heavy metals.</p></div>","PeriodicalId":13994,"journal":{"name":"International journal of hygiene and environmental health","volume":"261 ","pages":"Article 114417"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hygiene and environmental health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438463924000981","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Epidemiological studies on heavy metal exposure and liver injury are predominantly cross-sectional, lacking longitudinal data and exploration of potential mechanisms.
Method
We conducted a repeated-measures study in Northeast China from 2016 to 2019, involving 322 participants. Linear mixed models (LMM) and Bayesian kernel machine regression (BKMR) were employed to explore the associations between individual and mixed blood metal concentrations [chromium (Cr), cadmium (Cd), vanadium (V), manganese (Mn), lead (Pb)] and liver function biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), globulin (GLB), total protein (TP)]. Mediation and enrichment analyses were used to determine whether the inflammatory response is a critical pathway for heavy metal-induced liver damage.
Result
We obtained a total of 958 observations. The results from LMM and BKMR indicated significant associations between individual and mixed heavy metals and liver function biomarkers. Longitudinal analysis revealed associations between Cd and the annual increase rate of ALT (β = 2.61; 95% CI: 0.97, 4.26), the annual decrease rate of ALB (β = −0.21; 95% CI: −0.39, −0.03), Mn and the annual increase rate of GLB (β = 0.38; 95% CI: 0.05, 0.72), and V and the annual decrease rate of ALB/GLB (β = −1.15; 95% CI: −2.00, −0.31). Mediation analysis showed that high-sensitivity C-reactive protein (hsCRP) mediated the associations between Cd and AST, TP, with mediation effects of 27.7% and 13.4%, respectively. Additionally, results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses supported the role of inflammatory response pathways.
Conclusion
Our findings indicate that heavy metal exposure leads to liver damage, with the inflammatory response potentially serving as a crucial pathway in this process. This study offers a novel perspective on understanding heavy metal-induced liver injury and provides insights for preventive measures against the health damage caused by heavy metals.
期刊介绍:
The International Journal of Hygiene and Environmental Health serves as a multidisciplinary forum for original reports on exposure assessment and the reactions to and consequences of human exposure to the biological, chemical, and physical environment. Research reports, short communications, reviews, scientific comments, technical notes, and editorials will be peer-reviewed before acceptance for publication. Priority will be given to articles on epidemiological aspects of environmental toxicology, health risk assessments, susceptible (sub) populations, sanitation and clean water, human biomonitoring, environmental medicine, and public health aspects of exposure-related outcomes.