Genesis of the Neoarchean Algoma-type banded iron formation: constraints from Fe isotope and element geochemistry of the Qian’an iron deposit, eastern North China craton
{"title":"Genesis of the Neoarchean Algoma-type banded iron formation: constraints from Fe isotope and element geochemistry of the Qian’an iron deposit, eastern North China craton","authors":"Xin Han , Junlai Liu","doi":"10.1016/j.precamres.2024.107480","DOIUrl":null,"url":null,"abstract":"<div><p>The Neoarchean Qian’an BIF deposit in eastern Hebei, eastern North China Craton has attracted extensive attention of study in the last decades, but the genesis, e.g., Fe sources, metallogenic mechanism, as well as tectonic attributes of the BIFs remains highly disputed. Based on field investigations, microscopic observations and geochemical analysis, this study tries to unravel the source characteristics of ore-forming materials in the Qian’an deposit. The results show that the chemical compositions of the BIF ore samples are mainly composed of TFe<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub>, with minor Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>. The total trace element contents of the samples are relatively low. The PAAS-normalized REE distribution patterns of the ores show LREE depletion and HREE enrichment, with robust positive anomalies of Eu, Y and La. These characteristics indicate that the BIFs are attributed to dominant chemical precipitation originated from paleo-ocean with obvious volcanic hydrothermal contributions and minor clastic input. Their positive to no Ce anomalies and positive δ<sup>56</sup>Fe<sub>magnetite</sub> values unveil that the iron was precipitated at low oxygen fugacity. These results, in collaboration with evidence from previous lithological, structural geology, metamorphic P-T paths, geochemistry, geochronology and numerical modeling studies, support a mantle plume model to explain the complicated tectono-thermal processes, and the sources of BIFs in Eastern Hebei, eastern North China Craton.</p></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"410 ","pages":"Article 107480"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926824001931","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Neoarchean Qian’an BIF deposit in eastern Hebei, eastern North China Craton has attracted extensive attention of study in the last decades, but the genesis, e.g., Fe sources, metallogenic mechanism, as well as tectonic attributes of the BIFs remains highly disputed. Based on field investigations, microscopic observations and geochemical analysis, this study tries to unravel the source characteristics of ore-forming materials in the Qian’an deposit. The results show that the chemical compositions of the BIF ore samples are mainly composed of TFe2O3 and SiO2, with minor Al2O3 and TiO2. The total trace element contents of the samples are relatively low. The PAAS-normalized REE distribution patterns of the ores show LREE depletion and HREE enrichment, with robust positive anomalies of Eu, Y and La. These characteristics indicate that the BIFs are attributed to dominant chemical precipitation originated from paleo-ocean with obvious volcanic hydrothermal contributions and minor clastic input. Their positive to no Ce anomalies and positive δ56Femagnetite values unveil that the iron was precipitated at low oxygen fugacity. These results, in collaboration with evidence from previous lithological, structural geology, metamorphic P-T paths, geochemistry, geochronology and numerical modeling studies, support a mantle plume model to explain the complicated tectono-thermal processes, and the sources of BIFs in Eastern Hebei, eastern North China Craton.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.