Analysis and characterization of residual salts from lithium carbonate industry: Their potential uses for thermal storage systems

Pablo R. Dellicompagni , Judith Franco , Julia Santapaola , Victoria Flexer , Silvana Flores Larsen
{"title":"Analysis and characterization of residual salts from lithium carbonate industry: Their potential uses for thermal storage systems","authors":"Pablo R. Dellicompagni ,&nbsp;Judith Franco ,&nbsp;Julia Santapaola ,&nbsp;Victoria Flexer ,&nbsp;Silvana Flores Larsen","doi":"10.1016/j.nxener.2024.100160","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demand for clean energy and the urgent need to reduce greenhouse gas emissions have led to a growing awareness of the importance of thermal energy storage systems in the diversification of the electric matrix. Sensible heat and latent heat storage are the two main techniques, and the choice of storage system depends on the melting point of the substances and the thermal energy required for the processes. This study focused on waste salts obtained from the production process of lithium carbonate. The thermophysical properties of these salts, including specific heat, density, and thermal stability, were examined through various characterization techniques such as X-ray diffraction, chemical analysis, scanning electron microscopy, thermogravimetry, and differential scanning calorimetry. The results revealed promising thermal properties, chemical stability, and physical availability of the waste salts. Additionally, the study explored the potential benefits of reutilizing these waste salts, such as reducing environmental impact, promoting circular economy principles, and creating new market opportunities for commercial products. Overall, this research provides valuable insights into the thermophysical properties of waste salts from lithium carbonate production. The main results are heat capacity in the solid phase (0.767–3.143 J/g<!--> <!-->°C) and storable thermal energy (114–1153 TWh<sub>t</sub>). These findings contribute to the design and optimization of thermal energy storage systems, highlighting the potential for sustainable and efficient energy storage solutions in the context of global clean energy transitions.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000656/pdfft?md5=ee49322f4c59ec7579b376ec579613c4&pid=1-s2.0-S2949821X24000656-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for clean energy and the urgent need to reduce greenhouse gas emissions have led to a growing awareness of the importance of thermal energy storage systems in the diversification of the electric matrix. Sensible heat and latent heat storage are the two main techniques, and the choice of storage system depends on the melting point of the substances and the thermal energy required for the processes. This study focused on waste salts obtained from the production process of lithium carbonate. The thermophysical properties of these salts, including specific heat, density, and thermal stability, were examined through various characterization techniques such as X-ray diffraction, chemical analysis, scanning electron microscopy, thermogravimetry, and differential scanning calorimetry. The results revealed promising thermal properties, chemical stability, and physical availability of the waste salts. Additionally, the study explored the potential benefits of reutilizing these waste salts, such as reducing environmental impact, promoting circular economy principles, and creating new market opportunities for commercial products. Overall, this research provides valuable insights into the thermophysical properties of waste salts from lithium carbonate production. The main results are heat capacity in the solid phase (0.767–3.143 J/g °C) and storable thermal energy (114–1153 TWht). These findings contribute to the design and optimization of thermal energy storage systems, highlighting the potential for sustainable and efficient energy storage solutions in the context of global clean energy transitions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳酸锂工业残余盐的分析和表征:它们在蓄热系统中的潜在用途
对清洁能源日益增长的需求和减少温室气体排放的迫切需要,使人们日益认识到热能储存系统在电力矩阵多样化中的重要性。显热和潜热储存是两种主要技术,储存系统的选择取决于物质的熔点和工艺所需的热能。这项研究的重点是碳酸锂生产过程中产生的废盐。通过各种表征技术,如 X 射线衍射、化学分析、扫描电子显微镜、热重仪和差示扫描量热仪,对这些盐的热物理性质,包括比热、密度和热稳定性进行了研究。结果表明,废盐具有良好的热性能、化学稳定性和物理可用性。此外,该研究还探讨了重新利用这些废盐的潜在益处,如减少对环境的影响、促进循环经济原则以及为商业产品创造新的市场机会。总之,这项研究为碳酸锂生产过程中产生的废盐的热物理性质提供了宝贵的见解。主要结果是固相热容量(0.767-3.143 J/g °C)和可储存热能(114-1153 TWht)。这些发现有助于热能存储系统的设计和优化,突出了在全球清洁能源转型背景下可持续和高效能源存储解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1