A Co-evolutionary Multi-population Evolutionary Algorithm for Dynamic Multiobjective Optimization

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-07-05 DOI:10.1016/j.swevo.2024.101648
Xin-Xin Xu , Jian-Yu Li , Xiao-Fang Liu , Hui-Li Gong , Xiang-Qian Ding , Sang-Woon Jeon , Zhi-Hui Zhan
{"title":"A Co-evolutionary Multi-population Evolutionary Algorithm for Dynamic Multiobjective Optimization","authors":"Xin-Xin Xu ,&nbsp;Jian-Yu Li ,&nbsp;Xiao-Fang Liu ,&nbsp;Hui-Li Gong ,&nbsp;Xiang-Qian Ding ,&nbsp;Sang-Woon Jeon ,&nbsp;Zhi-Hui Zhan","doi":"10.1016/j.swevo.2024.101648","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic multiobjective optimization problems (DMOPs) widely appear in various real-world applications and have attracted increasing attention worldwide. However, how to obtain both good population diversity and fast convergence speed to efficiently solve DMOPs are two challenging issues. Inspired by that the multiple populations for multiple objectives (MPMO) framework can provide algorithms with good population diversity and fast convergence speed, this paper proposes a new efficient algorithm called a co-evolutionary multi-population evolutionary algorithm (CMEA) based on the MPMO framework together with three novel strategies, which are helpful for solving DMOPs efficiently from two aspects. First, in the evolution control aspect, a convergence-based population evolution strategy is proposed to select the suitable population for executing the evolution in different generations, so as to accelerate the convergence speed of the algorithm. Second, in the dynamic control aspect, a multi-population-based dynamic detection strategy and a multi-population-based dynamic response strategy are proposed to help the algorithm maintain the population diversity, which are efficient for detecting and responding to the dynamic changes of environments. Integrating with the above strategies, the CMEA is proposed to solve the DMOP efficiently. The superiority of the proposed CMEA is validated in experiments on widely-used DMOP benchmark problems.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221065022400186X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic multiobjective optimization problems (DMOPs) widely appear in various real-world applications and have attracted increasing attention worldwide. However, how to obtain both good population diversity and fast convergence speed to efficiently solve DMOPs are two challenging issues. Inspired by that the multiple populations for multiple objectives (MPMO) framework can provide algorithms with good population diversity and fast convergence speed, this paper proposes a new efficient algorithm called a co-evolutionary multi-population evolutionary algorithm (CMEA) based on the MPMO framework together with three novel strategies, which are helpful for solving DMOPs efficiently from two aspects. First, in the evolution control aspect, a convergence-based population evolution strategy is proposed to select the suitable population for executing the evolution in different generations, so as to accelerate the convergence speed of the algorithm. Second, in the dynamic control aspect, a multi-population-based dynamic detection strategy and a multi-population-based dynamic response strategy are proposed to help the algorithm maintain the population diversity, which are efficient for detecting and responding to the dynamic changes of environments. Integrating with the above strategies, the CMEA is proposed to solve the DMOP efficiently. The superiority of the proposed CMEA is validated in experiments on widely-used DMOP benchmark problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动态多目标优化的多群体协同进化算法
动态多目标优化问题(DMOPs)广泛出现在各种实际应用中,并引起了全世界越来越多的关注。然而,如何同时获得良好的种群多样性和快速的收敛速度以高效求解 DMOPs 是两个具有挑战性的问题。受多目标多种群(MPMO)框架可以提供种群多样性好、收敛速度快的算法的启发,本文提出了一种基于 MPMO 框架的新型高效算法--协同进化多种群进化算法(CMEA),并结合三种新型策略,从两个方面帮助高效求解 DMOPs。首先,在进化控制方面,提出了基于收敛的种群进化策略,在不同代选择合适的种群执行进化,从而加快算法的收敛速度。其次,在动态控制方面,提出了基于多种群的动态检测策略和基于多种群的动态响应策略,以帮助算法保持种群的多样性,从而有效地检测和响应环境的动态变化。结合上述策略,提出了高效求解 DMOP 的 CMEA。在广泛使用的 DMOP 基准问题上的实验验证了所提出的 CMEA 的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
A cloud 15kV-HDPE insulator leakage current classification based improved particle swarm optimization and LSTM-CNN deep learning approach A multi-strategy optimizer for energy minimization of multi-UAV-assisted mobile edge computing An archive-assisted multi-modal multi-objective evolutionary algorithm Historical knowledge transfer driven self-adaptive evolutionary multitasking algorithm with hybrid resource release for solving nonlinear equation systems Expected coordinate improvement for high-dimensional Bayesian optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1