Make static person walk again via separating pose action from shape

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Graphical Models Pub Date : 2024-07-03 DOI:10.1016/j.gmod.2024.101222
Yongwei Nie , Meihua Zhao , Qing Zhang , Ping Li , Jian Zhu , Hongmin Cai
{"title":"Make static person walk again via separating pose action from shape","authors":"Yongwei Nie ,&nbsp;Meihua Zhao ,&nbsp;Qing Zhang ,&nbsp;Ping Li ,&nbsp;Jian Zhu ,&nbsp;Hongmin Cai","doi":"10.1016/j.gmod.2024.101222","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the problem of animating a person in static images, the core task of which is to infer future poses for the person. Existing approaches predict future poses in the 2D space, suffering from entanglement of pose action and shape. We propose a method that generates actions in the 3D space and then transfers them to the 2D person. We first lift the 2D pose of the person to a 3D skeleton, then propose a 3D action synthesis network predicting future skeletons, and finally devise a self-supervised action transfer network that transfers the actions of 3D skeletons to the 2D person. Actions generated in the 3D space look plausible and vivid. More importantly, self-supervised action transfer allows our method to be trained only on a 3D MoCap dataset while being able to process images in different domains. Experiments on three image datasets validate the effectiveness of our method.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"134 ","pages":"Article 101222"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1524070324000109/pdfft?md5=625da7fe01537f9691e2758137e210d0&pid=1-s2.0-S1524070324000109-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070324000109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of animating a person in static images, the core task of which is to infer future poses for the person. Existing approaches predict future poses in the 2D space, suffering from entanglement of pose action and shape. We propose a method that generates actions in the 3D space and then transfers them to the 2D person. We first lift the 2D pose of the person to a 3D skeleton, then propose a 3D action synthesis network predicting future skeletons, and finally devise a self-supervised action transfer network that transfers the actions of 3D skeletons to the 2D person. Actions generated in the 3D space look plausible and vivid. More importantly, self-supervised action transfer allows our method to be trained only on a 3D MoCap dataset while being able to process images in different domains. Experiments on three image datasets validate the effectiveness of our method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将姿势动作与形状分离,让静止的人重新行走
本文探讨了在静态图像中制作人物动画的问题,其核心任务是推断人物的未来姿势。现有的方法是在二维空间中预测未来的姿势,存在姿势动作和形状的纠缠问题。我们提出了一种在三维空间生成动作,然后将其转移到二维人物的方法。我们首先将人的二维姿势提升为三维骨架,然后提出一个预测未来骨架的三维动作合成网络,最后设计一个自我监督的动作转移网络,将三维骨架的动作转移到二维人身上。在三维空间中生成的动作看起来合理而生动。更重要的是,自监督动作转移使我们的方法只需在三维 MoCap 数据集上进行训练,就能处理不同领域的图像。在三个图像数据集上的实验验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Graphical Models
Graphical Models 工程技术-计算机:软件工程
CiteScore
3.60
自引率
5.90%
发文量
15
审稿时长
47 days
期刊介绍: Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics. We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way). GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.
期刊最新文献
HammingVis: A visual analytics approach for understanding erroneous outcomes of quantum computing in hamming space A detail-preserving method for medial mesh computation in triangular meshes Exploring the neural landscape: Visual analytics of neuron activation in large language models with NeuronautLLM GarTemFormer: Temporal transformer-based for optimizing virtual garment animation Building semantic segmentation from large-scale point clouds via primitive recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1