Stefano Valtolina, Ricardo Anibal Matamoros, Francesco Epifania
{"title":"Design of a conversational recommender system in education","authors":"Stefano Valtolina, Ricardo Anibal Matamoros, Francesco Epifania","doi":"10.1007/s11257-024-09397-y","DOIUrl":null,"url":null,"abstract":"<p>In recent years, we have seen a significant proliferation of e-learning platforms. E-learning platforms allow teachers to create digital courses in a more effective and time-saving way, but several flaws hinder their actual success. One main problem is that teachers have difficulties finding and combining open-access learning materials that match their specific needs precisely when there are so many to choose from. This paper proposes a new strategy for creating digital courses that use learning objects (LOs) as primary elements. The idea consists of using an intelligent chatbot to assist teachers in their activities. Defined using RASA technology, the chatbot asks for information about the course the teacher has to create based on her/his profile and needs. It suggests the best LOs and how to combine them according to their prerequisites and outcomes. A chatbot-based recommendation system provides suggestions through BERT, a machine-learning model based on Transformers, to define the semantic similarity between the entered data and the LOs metadata. In addition, the chatbot also suggests how to combine the LOs into a final learning path. Finally, the paper presents some preliminary results about tests carried out by teachers in creating their digital courses.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"40 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-024-09397-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, we have seen a significant proliferation of e-learning platforms. E-learning platforms allow teachers to create digital courses in a more effective and time-saving way, but several flaws hinder their actual success. One main problem is that teachers have difficulties finding and combining open-access learning materials that match their specific needs precisely when there are so many to choose from. This paper proposes a new strategy for creating digital courses that use learning objects (LOs) as primary elements. The idea consists of using an intelligent chatbot to assist teachers in their activities. Defined using RASA technology, the chatbot asks for information about the course the teacher has to create based on her/his profile and needs. It suggests the best LOs and how to combine them according to their prerequisites and outcomes. A chatbot-based recommendation system provides suggestions through BERT, a machine-learning model based on Transformers, to define the semantic similarity between the entered data and the LOs metadata. In addition, the chatbot also suggests how to combine the LOs into a final learning path. Finally, the paper presents some preliminary results about tests carried out by teachers in creating their digital courses.
近年来,我们看到电子学习平台大量涌现。电子学习平台可以让教师以更有效、更省时的方式创建数字化课程,但也有一些缺陷阻碍了它们的实际成功。其中一个主要问题是,由于可供选择的开放式学习材料太多,教师很难准确地找到并组合符合其特定需求的学习材料。本文提出了一种创建以学习对象(LOs)为主要元素的数字课程的新策略。这一想法包括使用智能聊天机器人协助教师开展活动。该聊天机器人使用 RASA 技术进行定义,根据教师的个人资料和需求,询问有关教师必须创建的课程的信息。聊天机器人会建议最佳的学习目标,并根据其先决条件和结果来组合它们。基于聊天机器人的推荐系统通过 BERT(一种基于 Transformers 的机器学习模型)提供建议,以确定输入数据与 LO 元数据之间的语义相似性。此外,聊天机器人还建议如何将学习成果组合成最终的学习路径。最后,本文介绍了教师在创建数字课程时进行测试的一些初步结果。
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems