Geometry smoothing and local enrichment of the finite cell method with application to cemented granular materials

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-06-26 DOI:10.1007/s00466-024-02512-1
Mahan Gorji, Michail Komodromos, Wadhah Garhuom, Jürgen Grabe, Alexander Düster
{"title":"Geometry smoothing and local enrichment of the finite cell method with application to cemented granular materials","authors":"Mahan Gorji, Michail Komodromos, Wadhah Garhuom, Jürgen Grabe, Alexander Düster","doi":"10.1007/s00466-024-02512-1","DOIUrl":null,"url":null,"abstract":"<p>In recent times, immersed methods such as the finite cell method have been increasingly employed in structural mechanics to address complex-shaped problems. However, when dealing with heterogeneous microstructures, the FCM faces several challenges. Weak discontinuities occur at the interfaces between the different materials, resulting in kinks in the displacements and jumps in the strain and stress fields. Furthermore, the morphology of such composites is often described by 3D images, such as ones derived from X-ray computed tomography. These images lead to a non-smooth geometry description and thus, singularities in the stresses arise. In order to overcome these problems, several strategies are presented in this work. To capture the weak discontinuities at the material interfaces, the FCM is combined with local enrichment. Moreover, the L<span>\\(^2\\)</span>-projection is extended and applied to heterogeneous microstructures, transforming the 3D images into smooth level-set functions. All of the proposed approaches are applied to numerical examples. Finally, an application of cemented granular material is investigated using three versions of the FCM and is verified against the finite element method. The results show that the proposed methods are suitable for simulating heterogeneous materials starting from CT scans.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02512-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent times, immersed methods such as the finite cell method have been increasingly employed in structural mechanics to address complex-shaped problems. However, when dealing with heterogeneous microstructures, the FCM faces several challenges. Weak discontinuities occur at the interfaces between the different materials, resulting in kinks in the displacements and jumps in the strain and stress fields. Furthermore, the morphology of such composites is often described by 3D images, such as ones derived from X-ray computed tomography. These images lead to a non-smooth geometry description and thus, singularities in the stresses arise. In order to overcome these problems, several strategies are presented in this work. To capture the weak discontinuities at the material interfaces, the FCM is combined with local enrichment. Moreover, the L\(^2\)-projection is extended and applied to heterogeneous microstructures, transforming the 3D images into smooth level-set functions. All of the proposed approaches are applied to numerical examples. Finally, an application of cemented granular material is investigated using three versions of the FCM and is verified against the finite element method. The results show that the proposed methods are suitable for simulating heterogeneous materials starting from CT scans.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于胶结颗粒材料的有限单元法的几何平滑和局部富集
近来,结构力学中越来越多地采用有限单元法等沉浸式方法来解决形状复杂的问题。然而,在处理异质微结构时,有限单元法面临着一些挑战。不同材料之间的界面会出现微弱的不连续性,从而导致位移的扭结以及应变和应力场的跳跃。此外,此类复合材料的形态通常由三维图像来描述,例如从 X 射线计算机断层扫描中获得的图像。这些图像会导致非平滑几何描述,从而产生应力奇点。为了克服这些问题,本研究提出了几种策略。为了捕捉材料界面上的微弱不连续性,FCM 与局部富集相结合。此外,L\(^2\)投影被扩展并应用于异质微结构,将三维图像转化为平滑的水平集函数。所有提出的方法都应用于数值实例。最后,使用三种版本的 FCM 研究了胶结颗粒材料的应用,并与有限元法进行了验证。结果表明,所提出的方法适合从 CT 扫描开始模拟异质材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1