Inverse stochastic resonance in adaptive small-world neural networks

Marius E. Yamakou, Jinjie Zhu, Erik A. Martens
{"title":"Inverse stochastic resonance in adaptive small-world neural networks","authors":"Marius E. Yamakou, Jinjie Zhu, Erik A. Martens","doi":"arxiv-2407.03151","DOIUrl":null,"url":null,"abstract":"Inverse stochastic resonance (ISR) is a phenomenon where noise reduces rather\nthan increases the firing rate of a neuron, sometimes leading to complete\nquiescence. ISR was first experimentally verified with cerebellar Purkinje\nneurons. These experiments showed that ISR enables optimal information transfer\nbetween the input and output spike train of neurons. Subsequent studies\ndemonstrated the efficiency of information processing and transfer in neural\nnetworks with small-world topology. We conducted a numerical investigation into\nthe impact of adaptivity on ISR in a small-world network of noisy\nFitzHugh-Nagumo (FHN) neurons, operating in a bistable regime with a stable\nfixed point and a limit cycle -- a prerequisite for ISR. Our results show that\nthe degree of ISR is highly dependent on the FHN model's timescale separation\nparameter $\\epsilon$. The network structure undergoes dynamic adaptation via\nmechanisms of either spike-time-dependent plasticity (STDP) with\npotentiation-/depression-domination parameter $P$, or homeostatic structural\nplasticity (HSP) with rewiring frequency $F$. We demonstrate that both STDP and\nHSP amplify ISR when $\\epsilon$ lies within the bistability region of FHN\nneurons. Specifically, at larger values of $\\epsilon$ within the bistability\nregime, higher rewiring frequencies $F$ enhance ISR at intermediate (weak)\nsynaptic noise intensities, while values of $P$ consistent with\ndepression-domination (potentiation-domination) enhance (deteriorate) ISR.\nMoreover, although STDP and HSP parameters may jointly enhance ISR, $P$ has a\ngreater impact on ISR compared to $F$. Our findings inform future ISR\nenhancement strategies in noisy artificial neural circuits, aiming to optimize\ninformation transfer between input and output spike trains in neuromorphic\nsystems, and prompt venues for experiments in neural networks.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse stochastic resonance (ISR) is a phenomenon where noise reduces rather than increases the firing rate of a neuron, sometimes leading to complete quiescence. ISR was first experimentally verified with cerebellar Purkinje neurons. These experiments showed that ISR enables optimal information transfer between the input and output spike train of neurons. Subsequent studies demonstrated the efficiency of information processing and transfer in neural networks with small-world topology. We conducted a numerical investigation into the impact of adaptivity on ISR in a small-world network of noisy FitzHugh-Nagumo (FHN) neurons, operating in a bistable regime with a stable fixed point and a limit cycle -- a prerequisite for ISR. Our results show that the degree of ISR is highly dependent on the FHN model's timescale separation parameter $\epsilon$. The network structure undergoes dynamic adaptation via mechanisms of either spike-time-dependent plasticity (STDP) with potentiation-/depression-domination parameter $P$, or homeostatic structural plasticity (HSP) with rewiring frequency $F$. We demonstrate that both STDP and HSP amplify ISR when $\epsilon$ lies within the bistability region of FHN neurons. Specifically, at larger values of $\epsilon$ within the bistability regime, higher rewiring frequencies $F$ enhance ISR at intermediate (weak) synaptic noise intensities, while values of $P$ consistent with depression-domination (potentiation-domination) enhance (deteriorate) ISR. Moreover, although STDP and HSP parameters may jointly enhance ISR, $P$ has a greater impact on ISR compared to $F$. Our findings inform future ISR enhancement strategies in noisy artificial neural circuits, aiming to optimize information transfer between input and output spike trains in neuromorphic systems, and prompt venues for experiments in neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应小世界神经网络中的逆随机共振
反向随机共振(ISR)是指噪声降低而不是增加神经元的发射率,有时会导致完全静止的现象。ISR 首次在小脑珀金神经元上得到实验验证。这些实验表明,ISR 使神经元的输入和输出尖峰序列之间实现了最佳的信息传递。随后的研究证明了具有小世界拓扑结构的神经网络中信息处理和传递的效率。我们对一个由噪声菲茨休-纳古莫(FHN)神经元组成的小世界网络中适应性对 ISR 的影响进行了数值研究,该网络运行在双稳态系统中,具有稳定的固定点和极限周期(ISR 的先决条件)。我们的研究结果表明,ISR的程度高度依赖于FHN模型的时标分离参数$\epsilon$。网络结构通过尖峰时间相关可塑性(STDP)和同态结构可塑性(HSP)两种机制进行动态适应,前者的强直-/抑制-定标参数为$P$,后者的重布线频率为$F$。我们证明,当$epsilon$位于FHN神经元的双稳态区域内时,STDP和HSP都会放大ISR。具体来说,当双稳态区内的$epsilon$值较大时,较高的重布线频率$F$会在中等(弱)突触噪声强度下增强ISR,而与抑制-支配(电位-支配)一致的$P$值则会增强(恶化)ISR。我们的发现为未来噪声人工神经回路的ISR增强策略提供了参考,旨在优化神经形态系统中输入和输出尖峰列车之间的信息传递,并为神经网络实验提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1