Yu Zhang, 钰 张, Chuiping Yang, 垂平 杨, Qiping Su, 奇平 苏, Yihao Kang, 逸豪 康, Wen Zheng, 文 郑, Shaoxiong Li, 邵雄 李, Yang Yu and 扬 于
{"title":"Quantum Voting Machine Encoded with Microwave Photons","authors":"Yu Zhang, 钰 张, Chuiping Yang, 垂平 杨, Qiping Su, 奇平 苏, Yihao Kang, 逸豪 康, Wen Zheng, 文 郑, Shaoxiong Li, 邵雄 李, Yang Yu and 扬 于","doi":"10.1088/0256-307x/41/7/070302","DOIUrl":null,"url":null,"abstract":"We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters. Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"11 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/7/070302","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a simple quantum voting machine using microwave photon qubit encoding, based on a setup comprising multiple microwave cavities and a coupled superconducting flux qutrit. This approach primarily relies on a multi-control single-target quantum phase gate. The scheme offers operational simplicity, requiring only a single step, while ensuring verifiability through the measurement of a single qubit phase information to obtain the voting results. It provides voter anonymity, as the voting outcome is solely tied to the total number of affirmative votes. Our quantum voting machine also has scalability in terms of the number of voters. Additionally, the physical realization of the quantum voting machine is general and not limited to circuit quantum electrodynamics. Quantum voting machine can be implemented as long as the multi-control single-phase quantum phase gate is realized in other physical systems. Numerical simulations indicate the feasibility of this quantum voting machine within the current quantum technology.
期刊介绍:
Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.