Unprecedented Strength Enhancement Observed in Interpenetrating Phase Composites of Aperiodic Lattice Metamaterials

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-03 DOI:10.1002/adfm.202406890
Xinxin Wang, Zhendong Li, Junjie Deng, Tianyu Gao, Kexin Zeng, Xiao Guo, Xinwei Li, Wei Zhai, Zhonggang Wang
{"title":"Unprecedented Strength Enhancement Observed in Interpenetrating Phase Composites of Aperiodic Lattice Metamaterials","authors":"Xinxin Wang, Zhendong Li, Junjie Deng, Tianyu Gao, Kexin Zeng, Xiao Guo, Xinwei Li, Wei Zhai, Zhonggang Wang","doi":"10.1002/adfm.202406890","DOIUrl":null,"url":null,"abstract":"Simultaneous high strength and high toughness are highly sought‐after in lattice metamaterials, but these properties are typically mutually exclusive. To overcome this challenge, the development of interpenetrating phase composite (IPC), which incorporates a net matrix infill into the lattice, has shown great potential in overcoming these constraints and is thus of continuous practical interest. In this work, a novel aperiodic monotile truss lattice and polymer IPC that exhibit unprecedented enhancement in both strength and toughness are reported. Specifically, the aperiodic unit cell is inspired by Einstein's monotile, a single space‐filling shape where the cell orientation never repeats. The IPCs are achieved through 3D‐printed Ti‐6Al‐4V truss lattices and epoxy infiltration. The highest gain in compressive strength reveals an impressive 246.61% increase, significantly exceeding the “1 + 1 &gt; 2” idealization typically associated with strength in IPC metamaterials. Furthermore, a high specific energy absorption of 46.2 J g<jats:sup>−1</jats:sup> demonstrates superior toughness. The underlying mechanisms, including damage sequences, two‐phase interactions, and geometric effects between truss and epoxy, are fully elucidated. Overall, this work reports unprecedented enhancement in IPC's properties and demonstrates the potential of utilizing idealized structures to achieve an optimal combination of strength and toughness in mechanical metamaterials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202406890","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneous high strength and high toughness are highly sought‐after in lattice metamaterials, but these properties are typically mutually exclusive. To overcome this challenge, the development of interpenetrating phase composite (IPC), which incorporates a net matrix infill into the lattice, has shown great potential in overcoming these constraints and is thus of continuous practical interest. In this work, a novel aperiodic monotile truss lattice and polymer IPC that exhibit unprecedented enhancement in both strength and toughness are reported. Specifically, the aperiodic unit cell is inspired by Einstein's monotile, a single space‐filling shape where the cell orientation never repeats. The IPCs are achieved through 3D‐printed Ti‐6Al‐4V truss lattices and epoxy infiltration. The highest gain in compressive strength reveals an impressive 246.61% increase, significantly exceeding the “1 + 1 > 2” idealization typically associated with strength in IPC metamaterials. Furthermore, a high specific energy absorption of 46.2 J g−1 demonstrates superior toughness. The underlying mechanisms, including damage sequences, two‐phase interactions, and geometric effects between truss and epoxy, are fully elucidated. Overall, this work reports unprecedented enhancement in IPC's properties and demonstrates the potential of utilizing idealized structures to achieve an optimal combination of strength and toughness in mechanical metamaterials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在非周期性晶格超材料的互穿相复合材料中观察到前所未有的强度增强效果
同时具备高强度和高韧性是晶格超材料孜孜以求的目标,但这些特性通常是相互排斥的。为了克服这一难题,开发出了互穿相复合材料(IPC),它将净基质填充到晶格中,在克服这些限制方面显示出巨大的潜力,因此具有持续的实际意义。在这项研究中,报告了一种新型非周期性单桁架晶格和聚合物 IPC,其强度和韧性都得到了前所未有的提高。具体来说,非周期性单元格的灵感来自爱因斯坦单晶体,这是一种单一的空间填充形状,其单元取向从不重复。IPC 是通过 3D 打印 Ti-6Al-4V 桁架晶格和环氧树脂渗透实现的。抗压强度的最高增幅达到了惊人的 246.61%,大大超过了通常与 IPC 超材料强度相关的 "1 + 1 >2 "理想化值。此外,46.2 J g-1 的高比能量吸收也证明了其卓越的韧性。包括损伤序列、两相相互作用以及桁架和环氧树脂之间的几何效应在内的基本机制得到了充分阐明。总之,这项工作报告了 IPC 性能前所未有的提高,并展示了利用理想化结构实现机械超材料强度和韧性最佳组合的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Self-Recoverable Symmetric Protonic Ceramic Fuel Cell with Smart Reversible Exsolution/Dissolution Electrode An Ultrahydrating Polymer that Protects Protein Therapeutics and RNA-Lipid Nanoparticles Against Freezing, Heat and Lyophilization Stress Kinetics-Matched Electrode Design for Zn-Metal Free Zinc Ion Batteries with High Energy Density and Stabilities Harnessing the Manipulation of Single Cells to Construct Biological Structures: Tools and Applications Multiresponsive Ionic Conductive Alginate/Gelatin Organohydrogels with Tunable Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1