Research on Ultrasonic NDT of Wire to Terminal Joints: Comparison of Combinations of Various CNNs and Signal Processing Technologies

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2024-07-04 DOI:10.1007/s10921-024-01094-5
Xu He, Xiaobin Jiang, Runyang Mo, Jianzhong Guo
{"title":"Research on Ultrasonic NDT of Wire to Terminal Joints: Comparison of Combinations of Various CNNs and Signal Processing Technologies","authors":"Xu He, Xiaobin Jiang, Runyang Mo, Jianzhong Guo","doi":"10.1007/s10921-024-01094-5","DOIUrl":null,"url":null,"abstract":"<p>The wire to terminal joints are prepared using ultrasonic welding and find extensive application in various fields, such as new energy vehicles and aerospace. Traditionally, tensile strength tests have been employed for welding quality inspection. However, this study proposes an automatic nondestructive evaluation scheme to overcome the inefficiency and destructiveness associated with tensile testing. To achieve this, a 5 MHz/32-element array ultrasound probe is utilized for ultrasound detection and signal acquisition from two groups of joints categorized as OK (good quality) and NG (poor quality) based on their welding quality. Signal processing techniques including short-time Fourier transform, wavelet transform, and Gramian angular field are applied to convert one-dimensional time series into two-dimensional signal feature maps. Convolutional neural networks such as VGGNet, ResNet, DenseNet, and MobileNet are utilized for the classification of two-dimensional signal feature maps. The comprehensive evaluation of different feature maps and combinations of neural networks is conducted from various perspectives including network complexity, recognition accuracy, memory consumption, and inference time. The study findings indicate that wavelet transform feature maps achieve the highest accuracy across diverse neural networks, reaching up to 95% accuracy in VGGnet13 despite higher associated costs. In MobileNet-Small and ShuffleNet-V2 networks, the accuracy stands at approximately 85%, accompanied by faster inference times and lower costs. Considering all factors holistically, the combination of wavelet transforms feature maps with MobileNet and ShuffleNet demonstrates superior cost-effectiveness and suitability for ultimate deployment and application on mobile devices facilitating automated non-destructive assessment of wire to terminal joints quality.</p>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10921-024-01094-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The wire to terminal joints are prepared using ultrasonic welding and find extensive application in various fields, such as new energy vehicles and aerospace. Traditionally, tensile strength tests have been employed for welding quality inspection. However, this study proposes an automatic nondestructive evaluation scheme to overcome the inefficiency and destructiveness associated with tensile testing. To achieve this, a 5 MHz/32-element array ultrasound probe is utilized for ultrasound detection and signal acquisition from two groups of joints categorized as OK (good quality) and NG (poor quality) based on their welding quality. Signal processing techniques including short-time Fourier transform, wavelet transform, and Gramian angular field are applied to convert one-dimensional time series into two-dimensional signal feature maps. Convolutional neural networks such as VGGNet, ResNet, DenseNet, and MobileNet are utilized for the classification of two-dimensional signal feature maps. The comprehensive evaluation of different feature maps and combinations of neural networks is conducted from various perspectives including network complexity, recognition accuracy, memory consumption, and inference time. The study findings indicate that wavelet transform feature maps achieve the highest accuracy across diverse neural networks, reaching up to 95% accuracy in VGGnet13 despite higher associated costs. In MobileNet-Small and ShuffleNet-V2 networks, the accuracy stands at approximately 85%, accompanied by faster inference times and lower costs. Considering all factors holistically, the combination of wavelet transforms feature maps with MobileNet and ShuffleNet demonstrates superior cost-effectiveness and suitability for ultimate deployment and application on mobile devices facilitating automated non-destructive assessment of wire to terminal joints quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线对端子接头超声无损检测研究:各种 CNN 与信号处理技术组合的比较
电线与端子的连接采用超声波焊接,在新能源汽车和航空航天等多个领域得到广泛应用。传统的焊接质量检测方法是拉伸强度测试。然而,本研究提出了一种自动无损评估方案,以克服拉伸测试的低效率和破坏性。为此,利用 5 MHz/32 元阵列超声探头对根据焊接质量分为 OK(质量好)和 NG(质量差)的两组接头进行超声检测和信号采集。信号处理技术包括短时傅里叶变换、小波变换和格拉米安角场,用于将一维时间序列转换为二维信号特征图。卷积神经网络(如 VGGNet、ResNet、DenseNet 和 MobileNet)被用于二维信号特征图的分类。从网络复杂度、识别准确率、内存消耗和推理时间等多个角度对不同的特征图和神经网络组合进行了综合评估。研究结果表明,在各种神经网络中,小波变换特征图的准确率最高,在 VGGnet13 中准确率高达 95%,尽管相关成本较高。在 MobileNet-Small 和 ShuffleNet-V2 网络中,准确率约为 85%,同时推理时间更快,成本更低。综合考虑所有因素,小波变换特征图与 MobileNet 和 ShuffleNet 的结合显示出卓越的成本效益,适合在移动设备上进行最终部署和应用,从而促进对导线与终端接头质量的自动化无损评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
The Detection of Local Impact Fatigue Damage on Metal Materials by Combining Nonlinear Acoustic Modulation and Coda Wave Interferometry Feasibility Study on the Use of the Coplanar Capacitive Sensing Technique for Underwater Non-Destructive Evaluation A Method for Semi-automatic Mode Recognition in Acoustic Emission Signals Incipient Near Surface Cracks Characterization and Crack Size Estimation based on Jensen–Shannon Divergence and Wasserstein Distance Adaptive and High-Precision Isosurface Meshes from CT Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1