Non-Gaussian Ensemble Optimization

IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Mathematical Geosciences Pub Date : 2024-06-28 DOI:10.1007/s11004-024-10148-3
Mathias M. Nilsen, Andreas S. Stordal, Patrick N. Raanes, Rolf J. Lorentzen, Kjersti S. Eikrem
{"title":"Non-Gaussian Ensemble Optimization","authors":"Mathias M. Nilsen, Andreas S. Stordal, Patrick N. Raanes, Rolf J. Lorentzen, Kjersti S. Eikrem","doi":"10.1007/s11004-024-10148-3","DOIUrl":null,"url":null,"abstract":"<p>Ensemble-based optimization (EnOpt), commonly used in reservoir management, can be seen as a special case of a natural evolution algorithm. Stein’s lemma gives a new interpretation of EnOpt. This interpretation enables us to study EnOpt in the context of general mutation distributions. In this paper, a non-Gaussian generalization of EnOpt (GenOpt) is proposed, where the control gradient is estimated using Stein’s lemma, and the mutation distribution is updated separately via natural evolution. For the multivariate case, a Gaussian copula is used to represent dependencies between the marginals. The correlation matrix is also iteratively optimized. It is shown that using beta distributions as marginals in the GenOpt algorithm addresses the truncation problem that sometimes arises when applying EnOpt on bounded optimization problems. The performance of the proposed optimization algorithm is evaluated on several test cases. The experiments indicate that GenOpt is less dependent on the chosen hyperparameters, and it is able to converge more quickly than EnOpt on a reservoir management test case.</p>","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"65 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10148-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble-based optimization (EnOpt), commonly used in reservoir management, can be seen as a special case of a natural evolution algorithm. Stein’s lemma gives a new interpretation of EnOpt. This interpretation enables us to study EnOpt in the context of general mutation distributions. In this paper, a non-Gaussian generalization of EnOpt (GenOpt) is proposed, where the control gradient is estimated using Stein’s lemma, and the mutation distribution is updated separately via natural evolution. For the multivariate case, a Gaussian copula is used to represent dependencies between the marginals. The correlation matrix is also iteratively optimized. It is shown that using beta distributions as marginals in the GenOpt algorithm addresses the truncation problem that sometimes arises when applying EnOpt on bounded optimization problems. The performance of the proposed optimization algorithm is evaluated on several test cases. The experiments indicate that GenOpt is less dependent on the chosen hyperparameters, and it is able to converge more quickly than EnOpt on a reservoir management test case.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非高斯集合优化
水库管理中常用的基于集合的优化(EnOpt)可视为自然进化算法的一种特例。Stein Lemma 给 EnOpt 提供了一种新的解释。这种解释使我们能够在一般突变分布的背景下研究 EnOpt。本文提出了 EnOpt 的非高斯广义(GenOpt),其中控制梯度是利用斯坦因定理估计的,突变分布则是通过自然进化单独更新的。在多变量情况下,使用高斯共线来表示边际之间的依赖关系。相关矩阵也经过迭代优化。研究表明,在 GenOpt 算法中使用贝塔分布作为边值,可以解决在有界优化问题上应用 EnOpt 时有时会出现的截断问题。在几个测试案例中对所提出的优化算法的性能进行了评估。实验表明,GenOpt 对所选超参数的依赖性较小,在水库管理测试案例中,它比 EnOpt 收敛得更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical Geosciences
Mathematical Geosciences 地学-地球科学综合
CiteScore
5.30
自引率
15.40%
发文量
50
审稿时长
>12 weeks
期刊介绍: Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.
期刊最新文献
Optimization of Borehole Thermal Energy Storage Systems Using a Genetic Algorithm Spatial-Spectrum Two-Branch Model Based on a Superpixel Graph Convolutional Network and 1DCNN for Geochemical Anomaly Identification Quantifying and Analyzing the Uncertainty in Fault Interpretation Using Entropy Robust Optimization Using the Mean Model with Bias Correction From Fault Likelihood to Fault Networks: Stochastic Seismic Interpretation Through a Marked Point Process with Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1