Practical Trainable Temporal Postprocessor for Multistate Quantum Measurement

Saeed A. Khan, Ryan Kaufman, Boris Mesits, Michael Hatridge, Hakan E. Türeci
{"title":"Practical Trainable Temporal Postprocessor for Multistate Quantum Measurement","authors":"Saeed A. Khan, Ryan Kaufman, Boris Mesits, Michael Hatridge, Hakan E. Türeci","doi":"10.1103/prxquantum.5.020364","DOIUrl":null,"url":null,"abstract":"We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop and demonstrate a trainable temporal postprocessor (TPP) harnessing a simple but versatile machine learning algorithm to provide optimal processing of quantum measurement data subject to arbitrary noise processes for the readout of an arbitrary number of quantum states. We demonstrate the TPP on the essential task of qubit state readout, which has historically relied on temporal processing via matched filters in spite of their applicability for only specific noise conditions. Our results show that the TPP can reliably outperform standard filtering approaches under complex readout conditions, such as high-power readout. Using simulations of quantum measurement noise sources, we show that this advantage relies on the TPP’s ability to learn optimal linear filters that account for general quantum noise correlations in data, such as those due to quantum jumps, or correlated noise added by a phase-preserving quantum amplifier. Furthermore, we derive an exact analytic form for the optimal TPP weights: this positions the TPP as a linearly scaling generalization of matched filtering, valid for an arbitrary number of states under the most general readout noise conditions, all while preserving a training complexity that is essentially negligible in comparison with that of training neural networks for processing temporal quantum measurement data. The TPP can be autonomously and reliably trained on measurement data and requires only linear operations, making it ideal for field-programmable gate array implementations in circuit QED for real-time processing of measurement data from general quantum systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多态量子测量的实用可训练时序后处理器
我们开发并演示了一种可训练的时序后处理器(TPP),它利用一种简单但通用的机器学习算法,为任意数量量子态的读出提供对受任意噪声过程影响的量子测量数据的优化处理。我们在量子比特状态读出这一重要任务中演示了 TPP,尽管匹配滤波器仅适用于特定的噪声条件,但它在历史上一直依赖于通过匹配滤波器进行时间处理。我们的研究结果表明,在复杂的读出条件下(如高功率读出),TPP 可以可靠地超越标准滤波方法。通过对量子测量噪声源的模拟,我们表明这一优势依赖于 TPP 学习最优线性滤波器的能力,这种滤波器能考虑到数据中的一般量子噪声相关性,如量子跃迁引起的相关性,或由保相量子放大器添加的相关噪声。此外,我们还推导出了最佳 TPP 权重的精确解析形式:这将 TPP 定位为匹配滤波的线性扩展泛化,在最一般的读出噪声条件下对任意数量的状态都有效,同时保持了训练复杂度,与处理时间量子测量数据的神经网络相比,训练复杂度基本上可以忽略不计。TPP 可以根据测量数据进行自主、可靠的训练,并且只需要线性运算,因此非常适合在电路 QED 中实现现场可编程门阵列,用于实时处理来自一般量子系统的测量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1